scholarly journals Emission Characteristics of Greenhouse Gas N2O from Sewage Sludge Incineration Process.

1998 ◽  
Vol 34 (4) ◽  
pp. 267-277
Author(s):  
MOTOYUKI MIZUOCHI ◽  
KAZUAKI SATO ◽  
YUHEI INAMORI ◽  
MASATOSHI MATSUMURA
2000 ◽  
Vol 42 (3-4) ◽  
pp. 301-308 ◽  
Author(s):  
P. He ◽  
G. Gu ◽  
L. Shao ◽  
Y. Zhang

The process of low temperature thermo-chemical conversion of municipal sewage sludge to oil is a new developing technology in developed countries, which is developed based on some poor fuels processing process in recent years. The process has the advantages of reasonable thermal energy recovery (the whole process is a net thermal energy exporting process), suitable cost and less secondary pollutants. This research included the reaction conditions versus the converted products distributions, the reaction conditions versus the ratio of the process thermal energy input and output, exploring of reaction mechanisms, creating of reaction kinetics models. These results contribute not only to having a clear understanding about the technological features and evaluating the prospectives of technological development, but also provide a sound basis for the technological development on a larger scale. It is concluded that: 1) the sludge treatment process is a net thermal energy producer. 2) The optimal conversion temperature is 270°C, referring to making energy recovery ratio maximum. 3) The parameters of simple conversion reaction kinetics are n=2, A=8.5 S-1 and E=37.9 KJ/mol. 4) The secondary pollutants of the process can be effectively controlled. 5) The investment intensity of the process could be similar to that of the sewage sludge incineration process, and the operational economics of the process are obviously superior to those of the sewage sludge incineration process. The research results show that the technical-economic feasibility of low temperature thermo-chemical conversion process is favorable, because the reaction conditions are more moderate and the separation process of the products is more easily realized.


2018 ◽  
Vol 10 (8) ◽  
pp. 2790
Author(s):  
Seongmin Kang ◽  
Changsang Cho ◽  
Ki-Hyun Kim ◽  
Eui-chan Jeon

In this study, the fossil carbon contents of the two facilities were analyzed using 10 or more samples for each facility from June 2013 to March 2015. In addition, the optimal measurement period was calculated from the analyzed fossil carbon contents using a statistical method. As a result of the analysis, the fossil carbon contents were found to be less than 35%, indicating that the biomass content of sewage sludge was not 100%. The fossil carbon content could be representative of using yearly period measurements value. When calculating Green house gas (GHG) emissions from waste incineration, South Korea has been calculating only Non-CO2 emissions because it regarded the CO2 emitted in GHGs from sewage sludge (SS) incineration facilities as originating from biomass. However, biomass of the sewage sludge incineration facility is not 100%, so it is necessary to estimate the greenhouse gas emissions considering the fossil carbon content. Therefore, there is a need to increase the reliability of the greenhouse gas inventory by conducting further studies (such as CO2 concentration analysis) related to the calculation of CO2 emissions for the relevant facilities (sewage sludge incinerator).


Author(s):  
Seongmin Kang ◽  
Seungjin Kim ◽  
Jeongwoo Lee ◽  
Youngjae Jeon ◽  
Ki-Hyun Kim ◽  
...  

According to the IPCC guidelines, CO2 emissions from biomass should be excluded from the entire amount of CO2 emissions when calculating CO2 emissions and should be separately reported due to the “carbon neutrality.” Sewage sludge is one of the representative biomass fuels. And it is mixed with fossil fuels in terms of greenhouse gas reduction or is used as fuel to replace fossil fuels by itself. According to the results of this study, biomass contents of both the sewage sludge and the sewage sludge incineration exhaust gases did not amount to 100%. At present, in many countries(South Korea, Japan, and Germany), when calculating greenhouse gas emissions from sewage sludge incinerator, all CO2 emissions from sewage sludge are judged to be biomass and only those greenhouse gas emissions that correspond to Non-CO2 gases are calculated as greenhouse gas emissions. However, since, according our results, the content of sewage sludge is not 100% biomass, if CO2 emissions are excluded according to the existing greenhouse gas emission calculation method, the amount of emissions may be underestimated. Therefore, to accurately calculate greenhouse gas emissions from sewage sludge incinerator, CO2 emissions should be calculated in consideration of the fossil carbon contents of sewage sludge.


1992 ◽  
Vol 25 (4-5) ◽  
pp. 307-314 ◽  
Author(s):  
A. W. van der Vlies ◽  
J. H. B. te Marvelde

Recycling of sewage sludge will soon no longer be possible in The Netherlands, or will be possible only to a very limited degree. For that reason, part of the sewage sludge will have to be incinerated. This will happen particularly in those areas where tipping space is very limited. A sludge incineration plant is planned to be built in the town of Dordrecht, with a capacity of 45,000 tonnes dry solids per year. The plant will be subject to the very strict flue gas emission requirements of the Dutch Guideline on Incineration. The Guideline demands a sophisticated flue gas purification procedure.


1994 ◽  
Vol 30 (8) ◽  
pp. 139-148 ◽  
Author(s):  
M. Hiraoka

As a result of the spread of sewerage systems, the management of growing quantities of sewage sludge is becoming an urgent need. As the method of sludge management, thermal processes have mostly been applied to the treatment and disposal of sewage sludge in Japan, because of the difficulty of finding final disposal sites. This paper describes the progress of thermal processing technologies, especially focusing on drying-incineration process systems and melting-slag recycling process systems.


Author(s):  
Seongmin Kang ◽  
Joonyoung Roh ◽  
Eui-Chan Jeon

In the case of sewage sludge, as direct landfilling was recently prohibited, it is treated through incineration. Among the air pollutants discharged through the incineration of sewage sludge, NOx and SOx are considered secondary substances of PM2.5 and are being managed accordingly. However, NH3, another of the secondary substances of PM2.5, is not well managed, and the amount of NH3 discharged from sewage sludge incineration facilities has not been calculated. Therefore, in this study, we sought to determine whether NH3 is discharged in the exhaust gas of a sewage sludge incineration facility, and, when discharged, the NH3 emission factor was calculated, and the necessity of the development of the emission factor was reviewed. As a result of the study, it was confirmed that the amount of NH3 discharged from the sewage sludge incineration facility was 0.04 to 4.47 ppm, and the emission factor was calculated as 0.002 kg NH3/ton. The NH3 emission factor was compared with the NH3 emission factor of municipal solid waste proposed by EMEP/EEA (European Monitoring and Evaluation Programme/European Environment Agency) because the NH3 emission factor of the sewage sludge incineration facility had not been previously determined. As a result of the comparison, the NH3 emission factor of EMEP/EEA was similar to that of municipal solid waste, confirming the necessity of developing the NH3 emission factor of the sewage sludge incineration facility. In addition, the evaluation of the uncertainty of the additionally calculated NH3 emission factor was conducted quantitatively and the uncertainty range was presented for reference. In the future, it is necessary to improve the reliability of the NH3 emission factor of sewage sludge incineration facilities by performing additional analysis with statistical representation. In addition, the development of NH3 emission factors for industrial waste incineration facilities should be undertaken.


Sign in / Sign up

Export Citation Format

Share Document