Controlling Vibration and Noise Hazards to Insure Safe Work Conditions in Oil and Gas Plants

2016 ◽  
Author(s):  
N. Souil ◽  
J. Jacq ◽  
B. Crivelli ◽  
C. Deslot Marongiu ◽  
P. Vouagner ◽  
...  
Author(s):  
Ranjana K. Mehta ◽  
S. Camille Peres ◽  
Linsey M. Steege ◽  
Jim R. Potvin ◽  
Mike Wahl ◽  
...  

Fatigue, often defined as a physiological state of reduced mental or physical performance capability resulting from sleep loss, circadian phase, or workload (physical or cognitive), has been implicated as a critical risk factor resulting in severe injuries and accidents. A great deal of research has been done into the identification, measurement, and management of fatigue, however it is still poorly understood. This may be due to the characteristics and variability of work conditions across different industries; for example, fatigue in manufacturing is largely related to physical demands, and in aviation fatigue is related to sleep and shift-work. This panel will comprise of academics and practitioners across manufacturing, healthcare, transportation, aviation, and oil and gas industries. Topics covered within each industry will include fatigue causes and consequences, existing fatigue monitoring/management practices, barriers to fatigue monitoring and management, and recommendations/discussions around improving the current state.


Author(s):  
Vincenzo Castorani ◽  
Paolo Cicconi ◽  
Michele Germani ◽  
Sergio Bondi ◽  
Maria Grazia Marronaro ◽  
...  

Modularization is a current issue in the context of plant design. A modular system aims to reduce lead time and cost in design phases. An oil & gas plant consists of many Engineered-To-Order solutions to be submitted and approved during the negotiation phase. In this context, design tools and methods are necessary to support the design life cycle from the conceptual study to the detailed project. The paper proposes an approach to optimize the design of modularized oil & gas plants with a focus on the related steel structures. A test case shows the configuration workflow applied to a modular steel structure of about 400 tons. The modularized layout has been optimized using genetic algorithms. A Knowledge Base has been described to support the configuration phase related to the conceptual design. Design rules and metrics have been formalized from the analysis of past solutions.


2020 ◽  
Vol 12 (2) ◽  
pp. 639
Author(s):  
Reza Abbasinejad ◽  
Farzad Hourfar ◽  
Chandra Mouli R Madhuranthakam ◽  
Ali Elkamel

In oil and gas plants, the cost of devices applicable for supervising and controlling systems directly depends on the transmission and storage systems, which are related to the data size of process variables. In this paper, process variables frequency-domain and statistical analysis results have been studied to infer if there exists any possibility to reduce data size of the process variables without loss of any necessary information. Although automatic control is not applicable in a shutdown condition, for generalization of the obtained results, unscheduled shutdown data has also been analyzed and studied. The main goal of this paper is to develop an applicable algorithm for oil and gas plants to decrease the data size in controlling and monitoring systems, based on well-known and powerful mathematical techniques. The results show that it is possible to reduce the size of data dramatically (more than 99% for controlling, and more than 55% for monitoring purposes in comparison with existing methods), without loss of vital information and performance quality.


2011 ◽  
Vol 51 (2) ◽  
pp. 737
Author(s):  
Danny Norton ◽  
Dale Wright

Oil and gas facility managers are well aware that attention to detail saves lives and supports business continuity and reputation. Those tasked with stewardship of electrical assets will be aware of the need to protect their employees from the hazard of electrical arc flash and that it should be at the forefront of safety thinking. Complacency and lack of duty of care with this real and possibly un-quantified hazard can lead to fatalities. The primary solution to arc flash consequences in older installations has been the implementation of safe work procedures and personal protective equipment. While still valid, these solutions are the least effective options in the hierarchy of controls. SKM have developed a practical risk mitigation strategy that considers the hazards of prospective arc flash energy together with the cumulative effect of switchboard age, design, capability and condition. The strategy also considers the range of potential mitigation controls available through the mechanism of substitution and engineering design that focuses on reducing: The likelihood of an arc flash incident occurring; The likelihood of personnel exposure; and, The energy released should an incident occur. A structured arc flash risk assessment process can provide the asset owner the opportunity to rank individual switchboards for likelihood, consequence and risk, and thus provide direction for engineered remediation and capital expenditure. SKM proposes the way in which arc flash risk can be assessed, how appropriate layered mitigation measures might be selected, and how an asset owner may approach the issue of arc flash hazard mitigation to economically and reliably protect its employees.


Author(s):  
Abdelnaser Elwerfalli ◽  
M. Khurshid Khan ◽  
J. Eduardo Munive-Hernandez

Many oil and gas companies have suffered major production losses, and higher cost of maintenance due to the total shutdown of their plants to conduct TAM event during a certain period and according to scope of work. Therefore, TAM is considered the biggest maintenance activity in oil and gas plant in terms of manpower, material, time and cost. These plants usually undergo other maintenance strategies during normal operation of plants such as preventive, corrective and predictive maintenance. However, some components or units cannot be inspected or maintained during normal operation of plant unless plant facilities are a totally shut downed due to operating risks. These risks differ from a company to another due to many factors such as fluctuated temperatures and pressures, corrosion, erosion, cracks and fatigue caused by operating conditions, geographical conditions and economic aspects. The aim of this paper is to develop a TAM model to optimize the TAM scheduling associated with decreasing duration and increasing interval of the TAM of the gas plant. The methodology that this paper presents has three stages based on the critical and non-critical pieces of equipment. At the first stage, identifying and removing Non-critical Equipment pieces (NEs) from TAM activity to proactive maintenance types. During the second stage, the higher risk of each selected equipment is assessed in order to prioritize critical pieces of equipment based on Risk Based Inspection (RBI). At the third stage, failure probability and reliability function for those selected critical pieces of equipment are assessed. The results of development of the TAM model is led to the real optimization of TAM scheduling of gas plants that operated continuously around the clock in order to achieve a desired performance of reliability and availability of the gas plant, and reduce cost of TAM resulting from the production shutdown and cost of inspection and maintenance.


Sign in / Sign up

Export Citation Format

Share Document