scholarly journals Cross-Protection to Salt Stress and Fusarium Wilt with the Alleviation of Oxidative Stress in Mycorrhizal Strawberry Plants

2018 ◽  
Vol 56 (4) ◽  
pp. 187-192
Author(s):  
Shiam Ibna HAQUE ◽  
Yoh-ichi MATSUBARA
2009 ◽  
Vol 75 (12) ◽  
pp. 4111-4119 ◽  
Author(s):  
Heidy M. W. den Besten ◽  
Maarten Mols ◽  
Roy Moezelaar ◽  
Marcel H. Zwietering ◽  
Tjakko Abee

ABSTRACT Bacteria are able to cope with the challenges of a sudden increase in salinity by activating adaptation mechanisms. In this study, exponentially growing cells of the pathogen Bacillus cereus ATCC 14579 were exposed to both mild (2.5% [wt/vol] NaCl) and severe (5% [wt/vol] NaCl) salt stress conditions. B. cereus continued to grow at a slightly reduced growth rate when it was shifted to mild salt stress conditions. Exposure to severe salt stress resulted in a lag period, and after 60 min growth had resumed, with cells displaying a filamentous morphology. Whole-genome expression analyses of cells exposed to 2.5% salt stress revealed that the expression of these cells overlapped with the expression of cells exposed to 5% salt stress, suggesting that the corresponding genes were involved in a general salt stress response. Upregulation of osmoprotectant, Na+/H+, and di- and tripeptide transporters and activation of an oxidative stress response were noticeable aspects of the general salt stress transcriptome response. Activation of this response may confer cross-protection against other stresses, and indeed, increased resistance to heat and hydrogen peroxide could be demonstrated after preexposure to salt. A temporal shift between the transcriptome response and several phenotypic responses of severely salt-stressed cells was observed. After resumption of growth, these cells showed cellular filamentation, reduced chemotaxis, increased catalase activity, and optimal oxidative stress resistance, which corresponded to the transcriptome response displayed in the initial lag period. The linkage of transcriptomes and phenotypic characteristics can contribute to a better understanding of cellular stress adaptation strategies and possible cross-protection mechanisms.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2224
Author(s):  
Mira Rahman ◽  
Khussboo Rahman ◽  
Khadeja Sultana Sathi ◽  
Md. Mahabub Alam ◽  
Kamrun Nahar ◽  
...  

The present investigation was executed with an aim to evaluate the role of exogenous selenium (Se) and boron (B) in mitigating different levels of salt stress by enhancing the reactive oxygen species (ROS) scavenging, antioxidant defense and glyoxalase systems in soybean. Plants were treated with 0, 150, 300 and 450 mM NaCl at 20 days after sowing (DAS). Foliar application of Se (50 µM Na2SeO4) and B (1 mM H3BO3) was accomplished individually and in combined (Se+B) at three-day intervals, at 16, 20, 24 and 28 DAS under non-saline and saline conditions. Salt stress adversely affected the growth parameters. In salt-treated plants, proline content and oxidative stress indicators such as malondialdehyde (MDA) content and hydrogen peroxide (H2O2) content were increased with the increment of salt concentration but the relative water content decreased. Due to salt stress catalase (CAT), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glyoxalase I (Gly I) and glyoxalase II (Gly II) activity decreased. However, the activity of ascorbate peroxidase (APX), glutathione reductase (GR), glutathione peroxidase (GPX), glutathione S-transferase (GST) and peroxidase (POD) increased under salt stress. On the contrary, supplementation of Se, B and Se+B enhanced the activities of APX, MDHAR, DHAR, GR, CAT, GPX, GST, POD, Gly I and Gly II which consequently diminished the H2O2 content and MDA content under salt stress, and also improved the growth parameters. The results reflected that exogenous Se, B and Se+B enhanced the enzymatic activity of the antioxidant defense system as well as the glyoxalase systems under different levels of salt stress, ultimately alleviated the salt-induced oxidative stress, among them Se+B was more effective than a single treatment.


Author(s):  
Vokkaliga T. Harshavardhan ◽  
Geetha Govind ◽  
Rajesh Kalladan ◽  
Nese Sreenivasulu ◽  
Chwan-Yang Hong

2020 ◽  
Vol 156 ◽  
pp. 233-241
Author(s):  
Huan Li ◽  
Junyuan Shi ◽  
Zepeng Wang ◽  
Weiwei Zhang ◽  
Hongqiang Yang

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Signem Oney-Birol

AbstractL-carnitine is a fundamental ammonium compound responsible for energy metabolism in all living organisms. It is an oxidative stress regulator, especially in bacteria and yeast and lipid metabolism in plants. Besides its metabolic functions, l-carnitine has detoxification and antioxidant roles in the cells. Due to the complex interrelationship of l-carnitine between lipid metabolism and salinity dependent oxidative stress, this study investigates the exogenous l-carnitine (1 mM) function on seed germination, cell division and chromosome behaviour in barley seeds (Hordeum vulgare L. cv. Bulbul-89) under different salt stress concentrations (0, 0.25, 0.30 and 0.35 M). The present work showed that l-carnitine pretreatment could not be successful to stimulate cell division on barley seeds under non-stressed conditions compared to stressed conditions. Depending on increasing salinity without pretreatment with l-carnitine, the mitotic index significantly decreased in barley seeds. Pretreatment of barley seeds with l-carnitine under salt stress conditions was found promising as a plant growth promoter and stimulator of mitosis. In addition, pretreatment of barley seeds with l-carnitine alleviated detrimental effects of salt stress on chromosome structure and it protected cells from the genotoxic effects of salt. This may be caused by the antioxidant and protective action of the l-carnitine. Consequently, this study demonstrated that the exogenous application of 1 mM l-carnitine mitigates the harmful effects of salt stress by increasing mitosis and decreasing DNA damage caused by oxidative stress on barley seedlings.


2014 ◽  
Vol 42 (4) ◽  
pp. 568-577 ◽  
Author(s):  
H.Q. Zhao ◽  
L. Wang ◽  
J. Hong ◽  
X.Y. Zhao ◽  
X.H. Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document