Cross-Protection by Oxidative Stress: Improving Tolerance to Abiotic Stresses Including Salinity

Author(s):  
Vokkaliga T. Harshavardhan ◽  
Geetha Govind ◽  
Rajesh Kalladan ◽  
Nese Sreenivasulu ◽  
Chwan-Yang Hong
Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1367
Author(s):  
Edgar Baldemar Sepúlveda-García ◽  
José Francisco Pulido-Barajas ◽  
Ariana Arlene Huerta-Heredia ◽  
Julián Mario Peña-Castro ◽  
Renyi Liu ◽  
...  

Submergence and drought stresses are the main constraints to crop production worldwide. MicroRNAs (miRNAs) are known to play a major role in plant response to various stresses. In this study, we analyzed the expression of maize and teosinte miRNAs by high-throughput sequencing of small RNA libraries in maize and its ancestor teosinte (Zea mays ssp. parviglumis), under submergence, drought, and alternated stress. We found that the expression patterns of 67 miRNA sequences representing 23 miRNA families in maize and other plants were regulated by submergence or drought. miR159a, miR166b, miR167c, and miR169c were downregulated by submergence in both plants but more severely in maize. miR156k and miR164e were upregulated by drought in teosinte but downregulated in maize. Small RNA profiling of teosinte subject to alternate treatments with drought and submergence revealed that submergence as the first stress attenuated the response to drought, while drought being the first stress did not alter the response to submergence. The miRNAs identified herein, and their potential targets, indicate that control of development, growth, and response to oxidative stress could be crucial for adaptation and that there exists evolutionary divergence between these two subspecies in miRNA response to abiotic stresses.


2018 ◽  
Author(s):  
Vina Tran ◽  
Kara Geraci ◽  
Giovanni Midili ◽  
William Satterwhite ◽  
Rachel Wright ◽  
...  

AbstractA bacterium’s ability to thrive in the presence of multiple environmental stressors simultaneously determines its resilience. We showed that activation of the SigB-controlled general stress response by mild environmental or nutritional stress provided significant cross-protection to subsequent lethal oxidative, disulfide and nitrosative stress exposure. SigB activation is mediated via the stressosome and RsbP, the main conduits of environmental and nutritional stress, respectively. Cells exposed to mild environmental stress while lacking the major stressosome components RsbT or RsbRA were highly sensitive to subsequent oxidative stress, whereasrsbRB, rsbRC, rsbRDandytvAnull mutants showed a spectrum of sensitivity, confirming their redundant roles and suggesting they could modulate the signal generated by environmental stress or oxidative stress. Furthermore, from mutant analysis we infer that RsbRA phosphorylation by RsbT was important for this cross-resistance to oxidative stress. By contrast, cells encountering stationary phase stress required RsbP but not RsbT to survive subsequent oxidative stress caused by hydrogen peroxide and diamide. Interestingly, optimum cross-protection against nitrosative stress caused by SNP required SigB but not the known regulators, RsbT and RsbP, suggesting an additional and as yet uncharacterized route of SigB activation independent of the known environmental and energy-stress pathways. Together, these results provide a mechanism for howBacillus subtilispromotes enhanced resistance against lethal oxidative stress during likely physiologically relevant conditions such as mild environmental or nutrient stress.


2017 ◽  
Vol 38 (SI 2 - 6th Conf EFPP 2002) ◽  
pp. 490-493
Author(s):  
D. Demaria ◽  
D. Valentino ◽  
A. Matta ◽  
F. Cardinale

In order to investigate cross-protection mechanisms between stresses of different origins, greenhouse experiments were conducted to determine whether resistance levels to the fungal pathogen P. capsici were affected on wounded plants. To this purpose, tomato roots were wounded at 24h-intervals and allowed to age for up to 7 days before inoculation. Data from preliminary experiments indicate first (0–48 h old wounds) an increase in disease severity in wounded as compared to unwounded tomato plants infected with P. capsici. Then, as the wounds age, disease severity decreases to the point that plants wounded 3 days before inoculation are less susceptible than nonwounded plants. Here, with the use of tomato mutant lines, we suggest the involvement of ethylene (C<sub>2</sub>H<sub>4</sub>) and jasmonates (Ja) in the development of these responses towards P. capsici upon wounding of tomato plants.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jiexuan Zheng ◽  
Huaxiang Su ◽  
Ruoyi Lin ◽  
Hui Zhang ◽  
Kuaifei Xia ◽  
...  

Abstract Late embryogenesis abundant (LEA) proteins belong to a large family that exists widely in plants and is mainly involved in desiccation processes during plant development or in the response to abiotic stresses. Here, we reported on an atypical LEA gene (IpLEA) related to salt tolerance from Ipomoea pes-caprae L. (Convolvulaceae). Sequence analysis revealed that IpLEA belongs to the LEA_2 (PF03168) group. IpLEA was shown to have a cytoplasmic localization pattern. Quantitative reverse transcription PCR analysis showed that IpLEA was widely expressed in different organs of the I. pes-caprae plants, and the expression levels increased following salt, osmotic, oxidative, freezing, and abscisic acid treatments. Analysis of the 1,495 bp promoter of IpLEA identified distinct cis-acting regulatory elements involved in abiotic stress. Induction of IpLEA improved Escherichia coli growth performance compared with the control under abiotic stresses. To further assess the function of IpLEA in plants, transgenic Arabidopsis plants overexpressing IpLEA were generated. The IpLEA-overexpressing Arabidopsis seedlings and adult plants showed higher tolerance to salt and drought stress than the wild-type. The transgenic plants also showed higher oxidative stress tolerance than the wild-type Arabidopsis. Furthermore, the expression patterns of a series of stress-responsive genes were affected. The results indicate that IpLEA is involved in the plant response to salt and drought, probably by mediating water homeostasis or by acting as a reactive oxygen species scavenger, thereby influencing physiological processes under various abiotic stresses in microorganisms and plants.


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1334 ◽  
Author(s):  
Harsh Kumar ◽  
Kanchan Bhardwaj ◽  
Eugenie Nepovimova ◽  
Kamil Kuča ◽  
Daljeet Singh Dhanjal ◽  
...  

Numerous abiotic stresses trigger the overproduction of reactive oxygen species (ROS) that are highly toxic and reactive. These ROS are known to cause damage to carbohydrates, DNA, lipids and proteins, and build the oxidative stress and results in the induction of various diseases. To resolve this issue, antioxidants molecules have gained significant attention to scavenge these free radicals and ROS. However, poor absorption ability, difficulty in crossing the cell membranes and degradation of these antioxidants during delivery are the few challenges associated with both natural and synthetic antioxidants that limit their bioavailability. Moreover, the use of nanoparticles as an antioxidant is overlooked, and is limited to a few nanomaterials. To address these issues, antioxidant functionalized nanoparticles derived from various biological origin have emerged as an important alternative, because of properties like biocompatibility, high stability and targeted delivery. Algae, bacteria, fungi, lichens and plants are known as the producers of diverse secondary metabolites and phenolic compounds with extraordinary antioxidant properties. Hence, these compounds could be used in amalgamation with biogenic derived nanoparticles (NPs) for better antioxidant potential. This review intends to increase our knowledge about the antioxidant functionalized nanoparticles and the mechanism by which antioxidants empower nanoparticles to combat oxidative stress.


2020 ◽  
Vol 21 (20) ◽  
pp. 7433 ◽  
Author(s):  
Tsanko Gechev ◽  
Veselin Petrov

Abiotic stresses cause plant growth inhibition, damage, and in the most severe cases, cell death, resulting in major crop yield losses worldwide. Many abiotic stresses lead also to oxidative stress. Recent genetic and genomics studies have revealed highly complex and integrated gene networks which are responsible for stress adaptation. Here we summarize the main findings of the papers published in the Special Issue “ROS and Abiotic Stress in Plants”, providing a global picture of the link between reactive oxygen species and various abiotic stresses such as acid toxicity, drought, heat, heavy metals, osmotic stress, oxidative stress, and salinity.


Sign in / Sign up

Export Citation Format

Share Document