Oxidative stress of maize roots caused by a combination of both salt stress and manganese deprivation

2014 ◽  
Vol 42 (4) ◽  
pp. 568-577 ◽  
Author(s):  
H.Q. Zhao ◽  
L. Wang ◽  
J. Hong ◽  
X.Y. Zhao ◽  
X.H. Yu ◽  
...  
Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2224
Author(s):  
Mira Rahman ◽  
Khussboo Rahman ◽  
Khadeja Sultana Sathi ◽  
Md. Mahabub Alam ◽  
Kamrun Nahar ◽  
...  

The present investigation was executed with an aim to evaluate the role of exogenous selenium (Se) and boron (B) in mitigating different levels of salt stress by enhancing the reactive oxygen species (ROS) scavenging, antioxidant defense and glyoxalase systems in soybean. Plants were treated with 0, 150, 300 and 450 mM NaCl at 20 days after sowing (DAS). Foliar application of Se (50 µM Na2SeO4) and B (1 mM H3BO3) was accomplished individually and in combined (Se+B) at three-day intervals, at 16, 20, 24 and 28 DAS under non-saline and saline conditions. Salt stress adversely affected the growth parameters. In salt-treated plants, proline content and oxidative stress indicators such as malondialdehyde (MDA) content and hydrogen peroxide (H2O2) content were increased with the increment of salt concentration but the relative water content decreased. Due to salt stress catalase (CAT), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glyoxalase I (Gly I) and glyoxalase II (Gly II) activity decreased. However, the activity of ascorbate peroxidase (APX), glutathione reductase (GR), glutathione peroxidase (GPX), glutathione S-transferase (GST) and peroxidase (POD) increased under salt stress. On the contrary, supplementation of Se, B and Se+B enhanced the activities of APX, MDHAR, DHAR, GR, CAT, GPX, GST, POD, Gly I and Gly II which consequently diminished the H2O2 content and MDA content under salt stress, and also improved the growth parameters. The results reflected that exogenous Se, B and Se+B enhanced the enzymatic activity of the antioxidant defense system as well as the glyoxalase systems under different levels of salt stress, ultimately alleviated the salt-induced oxidative stress, among them Se+B was more effective than a single treatment.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Signem Oney-Birol

AbstractL-carnitine is a fundamental ammonium compound responsible for energy metabolism in all living organisms. It is an oxidative stress regulator, especially in bacteria and yeast and lipid metabolism in plants. Besides its metabolic functions, l-carnitine has detoxification and antioxidant roles in the cells. Due to the complex interrelationship of l-carnitine between lipid metabolism and salinity dependent oxidative stress, this study investigates the exogenous l-carnitine (1 mM) function on seed germination, cell division and chromosome behaviour in barley seeds (Hordeum vulgare L. cv. Bulbul-89) under different salt stress concentrations (0, 0.25, 0.30 and 0.35 M). The present work showed that l-carnitine pretreatment could not be successful to stimulate cell division on barley seeds under non-stressed conditions compared to stressed conditions. Depending on increasing salinity without pretreatment with l-carnitine, the mitotic index significantly decreased in barley seeds. Pretreatment of barley seeds with l-carnitine under salt stress conditions was found promising as a plant growth promoter and stimulator of mitosis. In addition, pretreatment of barley seeds with l-carnitine alleviated detrimental effects of salt stress on chromosome structure and it protected cells from the genotoxic effects of salt. This may be caused by the antioxidant and protective action of the l-carnitine. Consequently, this study demonstrated that the exogenous application of 1 mM l-carnitine mitigates the harmful effects of salt stress by increasing mitosis and decreasing DNA damage caused by oxidative stress on barley seedlings.


2014 ◽  
Vol 73 (1) ◽  
pp. 78-89 ◽  
Author(s):  
Sidney C. Praxedes ◽  
Fábio M. Damatta ◽  
Claudivan F. De Lacerda ◽  
José T. Prisco ◽  
Enéas Gomes-Filho

Abstract We have previously demonstrated that salt tolerance in cowpea could be associated with lesser impairments of the photosynthetic capacity. Taking into account that photosynthesis is the main sink for reducing power consumption, our central working hypothesis is that a salt-sensitive cultivar is more prone to suffer from oxidative stress. We analyzed the long-term effects of salt stress on oxidative damage and protection against reactive oxygen species in both leaves and roots of a salt-tolerant (Pitiúba) and a salt-sensitive (TVu) cowpea cultivar. Two salt treatments (0 and 75 mM NaCl) were applied to 10-day-old plants grown in nutrient solution for 24 days. Significant salt-induced oxidative damage as demonstrated via increases in malondialdehyde concentration were noted, particularly in leaves at the end of the experiment, although such damage was found earlier in Pitiúba. In salt-stressed plants, superoxide dismutase (SOD) activity increased only in Pitiúba at 24 days from the start of salt additions (DSSA). In Pitiúba, catalase (CAT) was not significantly affected by the treatments, whereas in TVu its activity was dramatically lower in salt-stressed plants at 10DSSAonwards. In general salt stress led to significant increases, much more pronounced in ascorbate peroxidase (APX), glutathione reductase (GR) and guaiacol peroxidase (GPX), at the end of the experiment in both cultivars. In roots, salt-induced increases in enzyme activities were particularly noted at 24 DSSA, as found for SOD and APX in Pitiúba, CAT in TVu and GR and GPX in both cultivars. Therefore, in contrast to our expectations, the present results argue, to a great extent, against a functional link between salt stress tolerance and the expression of the antioxidant system. We also demonstrated that leaves and roots should be evaluated for a full assessment of whole plant acclimation to salt stress.


Author(s):  
Mohammad Akbari ◽  
Ramesh katam ◽  
Rabab Husain ◽  
Mostafa Farajpour ◽  
Silvia Mazzuca ◽  
...  

Salinity substantially affects plant growth and crop productivity worldwide. Plants adopt several biochemical mechanisms including regulation of antioxidant biosynthesis to protect themselves against the toxic effects induced by the stress. One-year-old Pistachio rootstock exhibiting different degrees of salinity tolerance were subjected to sodium chloride induced salt stress to identify genetic diversity among cultivated pistachio rootstock for their antioxidant responses, and to determine the correlation of these enzymes to salinity stress. Leaves and roots were harvested following NaCl-induced stress. Results show that a higher concentration of NaCl treatment induced oxidative stress in the leaf tissue and to a lesser extent in the roots. Both tissues showed an increase in ascorbate peroxidase, superoxide dismutase, catalase, glutathione reductase, peroxidase and malondialdehyde. Responses of antioxidant enzymes were cultivar dependent, as well as temporal and dependent on the salinity level. Linear and quadratic regression model analysis revealed significant correlation of enzyme activities to salinity treatment in both tissues. The variation in salinity tolerance reflected their capabilities in orchestrating antioxidant enzymes at the roots and harmonized across the cell membranes of the leaves. The study provides a better understanding of root and leaf coordination in regulating the antioxidant enzymes to NaCl induced oxidative stress.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10765
Author(s):  
Xiaoxiang Zhang ◽  
Peng Liu ◽  
Chunyan Qing ◽  
Cong Yang ◽  
Yaou Shen ◽  
...  

Salt stress affects crop yield by limiting growth and delaying development. In this study, we constructed 16 transcriptome libraries from maize seedling roots using two maize lines, with contrasting salt tolerance, that were exposed to salt stress for 0, 6, 18 and 36 h. In total, 6,584 differential expression genes (DEGs; 3,669 upregulated, 2,915 downregulated) were induced in the salt-sensitive line and 6,419 DEGs (3,876 upregulated, 2,543 downregulated) were induced in the salt-tolerant line. Several DEGs common to both lines were enriched in the ABA signaling pathway, which was presumed to coordinate the process of maize salt response. A total of 459 DEGs were specifically induced in the salt-tolerant line and represented candidate genes responsible for high salt-tolerance. Expression pattern analysis for these DEGs indicated that the period between 0 and 6 h was a crucial period for the rapid response of the tolerant genes under salt stress. Among these DEGs, several genes, Aux/IAA, SAUR, and CBL-interacting kinase have been reported to regulate salt tolerance. In addition, the transcription factors WRKY, bZIP and MYB acted as regulators in the salt-responsive regulatory network of maize roots. Our findings will contribute to understanding of the mechanism on salt response and provide references for functional gene revelation in plants.


Sign in / Sign up

Export Citation Format

Share Document