scholarly journals ULTRAVIOLET MUTAGENESIS OF LOCAL ISOLATE Trichoderma sp. T065 FOR IMPROVING CELLULASES ACTIVITY (Mutagenesis Isolat Lokal Trichoderma sp. T065 menggunakan Ultraviolet untuk meningkatkan Aktivitas Selulase)

2016 ◽  
Vol 6 (01) ◽  
Author(s):  
Trisanti Anindyawati ◽  
Eddy Jusuf ◽  
Haznan Abimanyu

Mutagenesis of indigenous fungal isolates Trichoderma sp. T065 was achieved by UV light in a laminar air flow and UV crosslinker to increase cellulase activity. Thirty-four mutants were tested for their growth capacity in mineral agar with several carbon sources: Whatman filter paper no.1, 1% carboxymethylcellulose (CMC), 2% cellulose powder, 1% Avicel and 4% delignified oil palm empty fruit bunches (DOPEFB) with granule size of 200 mesh. Three mutants (UV-1.1, 1.2-UV and UV-1.3) showed bigger growth zone on cellulose substrate of 4% DOPEFB than that of wild type Trichoderma sp. T065. The highest cellulase activities were 0.65 FPU/mL and 0.57 FPU/mL from UV-1.1 and UV-1- 3, respectively higher than wild type that is equal to 0.038 FPU/mL.Keywords: Trichoderma sp. T065, mutations, UV light, carbon source, cellulase activityABSTRAKMutagenesis isolat lokal kapang Trichoderma sp. T065 dilakukan dengan sinar UV pada laminar air flow dan UV crosslinker untuk meningkatkan aktivitas selulase. Tiga puluh empat kapang mutan diuji kapasitas pertumbuhannya pada mineral agar dengan beberapa jenis sumber karbon yaitu kertas saring Whatman no.1, 1% carboxymethylcellulose (CMC), 2% serbuk selulosa, 1% avicel dan 4% tandan kosong sawit (TKS) dengan ukuran granula 200 mesh. Tiga mutan (UV-1.1, UV-1.2 dan UV- 1.3) mempunyai zona pertumbuhan yang lebih besar pada substrat selulosa dengan sumber karbon 4% TKS daripada isolat asli Trichoderma sp. T065. Aktivitas selulase tertinggi adalah 0,65 FPU/mL dan 0,57 FPU/mL berturut-turut dari mutan UV-1.1 dan UV-1.3 yang lebih tinggi dari isolat aslinya yaitu 0,038 FPU/mL.Kata kunci : Trichoderma sp. T065, mutasi, sinar UV, sumber karbon, aktivitas selulase  

2020 ◽  
Vol 8 (3) ◽  
pp. 336-342
Author(s):  
Inzer Gul Afghan ◽  
Anupama Shrivastav

Polyhydroxyalkanoates (PHAs) are biosynthetic, environmentally friendly and biodegradable polyester stored as a granules inside the cytoplasm of microorganisms, granules are compounds of PHAs used as carbon and energy source, Synthetic polymer take many years to demolish completely, microorganisms can degrade PHAs within a year into carbon dioxide, water and energy, The main contributor for PHAs production cost is carbon sources cost, Accordingly it is favorable to produce PHA from any agriculture waste like rice bran. Aim of this dissertation is to utilize rice bran which was obtained from Limda field near Parul University, screening and isolation of polyhydroxyalkanoates PHAs producing bacteria, Synthesis of most effective PHB, different wild type microorganisms were studied by flask shaking method to determine their ability to produce PHA utilizing rice bran as carbon source, Total 16 isolates showed the fluorescence in the presence of Nile blue in solid medium under UV light, two bacterial isolates SF-3 and SF-2 isolated from jaggery waste, respectively, PHA Accumulation for (2%RB-1%) and (2%RB-5%) was 68% and 47% PHA/(CDW) respectively, the PHB obtain from (2%RB-1%) and (2%RB-5%) was analyzed by FTIR and NMR as poly hydroxyl butyrate (PHB). Int. J. Appl. Sci. Biotechnol. Vol 8(3): 336-342


2018 ◽  
Vol 20 (1) ◽  
pp. 42-48
Author(s):  
Eka Triwahyuni ◽  
Yosi Aristiawan ◽  
Novita Ariani ◽  
Haznan Abimanyu ◽  
Trisanti Anindyawati

AbstractAs higher interest was on the lignocellulose-based or second generation bioethanol production, the research was then more focused on the production of cellulase, especially on the domestic enzyme. Trichoderma sp. is considered as one of the most efficient producer of cellulase. This study was conducted to investigate the performance of Trichoderma sp. on a variety of substrates to produce cellulase. Three types of substrate variations and three types of Trichoderma sp. were used in this experiment. The substrate used were wheat bran, rice bran and oil palm empty fruit bunches (EFBs), whereas Trichoderma sp. isolates were encoded as T004, T051 and T063. Production of cellulase was made by solid fermentation for 7 days. The analysis of cellulase activity was done by National Renewable Energy Laboratory (NREL) method for filter paper assay. The results showed that the type of substrate affected the performance of Trichoderma sp. All types of fungus produced cellulase on wheat bran substrate with activity of 0.52 FPU /ml for T004, 0.23 FPU/ml for T051 and 0.27 FPU /ml for T063. With the rice bran substrate and EFBs, only T004 could produce cellulase and the enzyme activity analyzed were 0.08 FPU /ml and 0.008 FPU/ml respectively. Optimation of the buffer addition on enzyme extraction process produces the highest activity 0.85 FPU/mL for T004 with wheat bran substrate. Keywords: cellulase, EFBs, rice bran , Trichoderma sp. , wheat bran


2019 ◽  
Vol 20 (22) ◽  
pp. 5737 ◽  
Author(s):  
Miriam González-Villanueva ◽  
Hemanshi Galaiya ◽  
Paul Staniland ◽  
Jessica Staniland ◽  
Ian Savill ◽  
...  

Cupriavidus necator H16 is a non-pathogenic Gram-negative betaproteobacterium that can utilize a broad range of renewable heterotrophic resources to produce chemicals ranging from polyhydroxybutyrate (biopolymer) to alcohols, alkanes, and alkenes. However, C. necator H16 utilizes carbon sources to different efficiency, for example its growth in glycerol is 11.4 times slower than a favorable substrate like gluconate. This work used adaptive laboratory evolution to enhance the glycerol assimilation in C. necator H16 and identified a variant (v6C6) that can co-utilize gluconate and glycerol. The v6C6 variant has a specific growth rate in glycerol 9.5 times faster than the wild-type strain and grows faster in mixed gluconate–glycerol carbon sources compared to gluconate alone. It also accumulated more PHB when cultivated in glycerol medium compared to gluconate medium while the inverse is true for the wild-type strain. Through genome sequencing and expression studies, glycerol kinase was identified as the key enzyme for its improved glycerol utilization. The superior performance of v6C6 in assimilating pure glycerol was extended to crude glycerol (sweetwater) from an industrial fat splitting process. These results highlight the robustness of adaptive laboratory evolution for strain engineering and the versatility and potential of C. necator H16 for industrial waste glycerol valorization.


1990 ◽  
Vol 36 (7) ◽  
pp. 484-489 ◽  
Author(s):  
G. C. Papavizas ◽  
D. P. Roberts ◽  
K. K. Kim

Aqueous suspensions of conidia of Gliocladium virens strains Gl-3 and Gl-21 were exposed to both ultraviolet radiation and ethyl methanesulfonate. Two mutants of Gl-3 and three of Gl-21 were selected for tolerance to benomyl at 10 μg∙mL−1, as indicated by growth and conidial germination on benomyl-amended potato dextrose agar. The mutants differed considerably from their respective wild-type strains in appearance, growth habit, sporulation, carbon-source utilization, and enzyme activity profiles. Of 10 carbon sources tested, cellobiose, xylose, and xylan were the best for growth, galactose and glucose were intermediate, and arabinose, ribose, and rhamnose were poor sources of carbon. The wild-type strains and the mutants did not utilize cellulose as the sole carbon source for growth. Two benomyl-tolerant mutants of Gl-3 produced less cellulase (β-1,4-glucosidase, carboxymethylcellulase, filter-paper cellulase) than Gl-3. In contrast, mutants of Gl-21 produced more cellulase than the wild-type strain. Only Gl-3 provided control of blight on snapbean caused by Sclerotium rolfsii. Wild-type strain Gl-21 and all mutants from both strains were ineffective biocontrol agents. Key words: Gliocladium, benomyl tolerance, Sclerotium, rhizosphere competence.


2017 ◽  
Vol 30 (11) ◽  
pp. 886-895 ◽  
Author(s):  
Maria Chiara Paccanaro ◽  
Luca Sella ◽  
Carla Castiglioni ◽  
Francesca Giacomello ◽  
Ana Lilia Martínez-Rocha ◽  
...  

Endo-polygalacturonases (PGs) and xylanases have been shown to play an important role during pathogenesis of some fungal pathogens of dicot plants, while their role in monocot pathogens is less defined. Pg1 and xyr1 genes of the wheat pathogen Fusarium graminearum encode the main PG and the major regulator of xylanase production, respectively. Single- and double-disrupted mutants for these genes were obtained to assess their contribution to fungal infection. Compared with wild-type strain, the ∆pg mutant showed a nearly abolished PG activity, slight reduced virulence on soybean seedlings, but no significant difference in disease symptoms on wheat spikes; the ∆xyr mutant was strongly reduced in xylanase activity and moderately reduced in cellulase activity but was as virulent as wild type on both soybean and wheat plants. Consequently, the ΔpgΔxyr double mutant was impaired in xylanase, PG, and cellulase activities but, differently from single mutants, was significantly reduced in virulence on both plants. These findings demonstrate that the concurrent presence of PG, xylanase, and cellulase activities is necessary for full virulence. The observation that the uronides released from wheat cell wall after a F. graminearum PG treatment were largely increased by the fungal xylanases suggests that these enzymes act synergistically in deconstructing the plant cell wall.


2011 ◽  
Vol 39 (7) ◽  
pp. e25-e29 ◽  
Author(s):  
Magda Diab-Elschahawi ◽  
Jutta Berger ◽  
Alexander Blacky ◽  
Oliver Kimberger ◽  
Ruken Oguz ◽  
...  

2015 ◽  
Vol 9 (1) ◽  
pp. 495-498 ◽  
Author(s):  
M James ◽  
W.S Khan ◽  
M.R Nannaparaju ◽  
J.S Bhamra ◽  
R Morgan-Jones

Since the introduction of laminar air flow in orthopaedic theatres by Sir John Charnley, it has widely become accepted as the standard during orthopaedic procedures such as joint arthroplasty. We present a review of available current literature for the use of laminar flow operating theatre ventilation during total joint arthroplasty and examines the effectiveness of laminar flow ventilated operating theatres in preventing post-operative wound infection. Results of our findings suggest that while bacterial and air particulate is reduced by laminar air flow systems, there is no conclusive effect on the reduction of post-operative wound infections following total joint arthroplasty. We conclude that a combination of strict aseptic technique, prophylactic antibiotics and good anaesthetic control during surgery remains crucial to reduce post-operative surgical infections.


1992 ◽  
Vol 38 (9) ◽  
pp. 883-890 ◽  
Author(s):  
Dennis P. Jackson ◽  
Douglas A. Gray ◽  
Vincent L. Morris ◽  
Diane A. Cuppels

The prototrophic Pseudomonas syringae pv. tomato mutant DC3481, which is the result of a single-site Tn5 insertion, cannot grow and cause disease on tomato plants and cannot use the major organic acids of tomato, i.e., citric, malic, succinic, and tartaric acids, as sole carbon sources. Although nonpathogenic, strain DC3481 can still induce a hypersensitive reaction in nonhost plants. We have identified a 30-kb fragment of P. syringae pv. tomato wild-type DNA that can complement this mutant. EcoRI fragments from this region were subcloned and individually subjected to functional complementation analysis. The 3.8-kb fragment, which was the site of the Tn5 insertion, restored pathogenicity and the ability to use all the major organic acids of tomato as carbon sources. It shares sequence homology with several P. syringae pathovars but not other bacterial tomato pathogens. Our results indicate that sequences on the 3.8-kb EcoRI fragment are required for both the ability to grow on tomato leaves (and thus cause disease) and the utilization of carboxylic acids common to tomato. The 3.8-kb fragment may contain a sequence (or sequences) that regulates both traits. Key words: Pseudomonas syringae pv. tomato, phytopathogenicity, Tn5, tricarboxylic acid metabolism, bacterial speck, growth in planta.


Sign in / Sign up

Export Citation Format

Share Document