scholarly journals EFFECT OF SPRAYING AND MESH SIZE ON SURFACE ROUGHNESS OF SS400 STEEL SANDBLASTING PROCESS

Author(s):  
Budi Saputra ◽  
Rieza Zulrian Aldio ◽  
Dedikarni

During this time the ship's hull often occurs due to corrosion levels of salt in the Indonesian sea varies. The repair process often done to overcome this problem is by sandblasting which aims to clean the metal from the surface of the rust and provide suitable surface roughness on the metal surface so that the coating material can stick properly. This study aims to determine the size of silica sand and the repetition of the sandblasting process on the value of surface roughness and cleanliness of the material. In this study the SS400 material was sandblasting using 12 mesh, 16 mesh and 20 mesh sand at 7 bar, spraying 1x and 2x. From the test results obtained at a particle size of 20 mesh, 7 bar pressure, repeated spraying 2x which results in a surface roughness of 19.80 µm and cleanliness results achieved according to standard SA 2 1/2 (SSPC-SP10) from these conditions obtained surface roughness values according with the standard surface roughness of sandblasting and the level of cleanliness achieved in accordance with ISO 8503 standards and has been allowed for application.

2013 ◽  
Vol 481 ◽  
pp. 258-263
Author(s):  
Zhi Ning Jia ◽  
Cai Zhe Hao ◽  
Chao Han

The influences of metal surface roughness on the shear strength and peel strength of fiber woven composites (FWC) were studied. Test results show that the metal surface roughness have an important impact on the shear strength and peel strength of FWC. Higher or lower surface roughness can reduce the adhesive strength of FWC. When the best roughness is 0.8, the maximum peel strength and shear strength of FWC are obtained, which ensure the operation reliability and enough life of the spherical plain bearing (SPB) with self-lubrication fabric liner.


2019 ◽  
Vol 29 (3) ◽  
pp. 1439-1444
Author(s):  
Weronika Czepułkowska ◽  
Emilia Wołowiec-Korecka ◽  
Leszek Klimek

Abstract The parameters of abrasive blasting process directly affect the condition of the metal surface, changing the degree of surface roughness and wettability, depending on the size of the used particle, the pressure or type of abrasive. The aim of this study was to analyze the condition of Ni-Cr alloy surface after abrasive blasting using various process variants. The samples were blasted by Al2O3 abrasive using various particle sizes and pressures of the process. Basic and specific roughness parameters were investigated, and a surface wettability test was performed, and the percentage share of abrasive particles penetrated in the surface after abrasive blasting was also examined. The most considerable differences in the condition of the surface were observed with the change in the particle size of Al2O3. Statistical analysis confirmed the statistical significance of all these relationships.


2020 ◽  
Vol 867 ◽  
pp. 134-139
Author(s):  
Teguh Dwi Widodo ◽  
Rudianto Raharjo ◽  
Redi Bintarto ◽  
Fikrul Akbar Alamsyah

The paper presents the effect of size and repetition process on silica blasting on the surface character of Medical Grade SS316L. In this study, topography and surface roughness of SS316L will be evaluated both using optical and stylus methods. Medical Grade SS316L was blasted using silica sand with a mesh size of 10-30 (then called K), mesh 40-60 (then called S), and mesh 70-90 (then called H). Silica blasting processes was carried out on the surface of Medical Grade SS316L at room temperature, 90° of nozzle direction, and 7 bar of nozzle pressure. The silica blasting process was carried out by varying the treatments of K, S, H, KH, and SH for 10 minutes each. The results show that roughness increases with the size of silica sand, moreover the repetition of the H process on the K and S (KH and SH process) will refine the surface roughness of the results of S and K processes but when compared to H is relatively coarse.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Can Wang ◽  
Youyuan Wang ◽  
Peng Fan ◽  
Ruijin Liao

This paper prepares polyethylene/silica nanocomposites with concentrations of 3 wt% and 5 wt% by using silicon dioxide (SiO2) nanopowder (nanosilica) with particle sizes of 15 and 50 nm. Samples whose elongations are 3%, 6%, and 10% are prepared. Pulsed electroacoustic technique is applied to evaluate the space charge distribution in samples. Test results show that homocharge near electrodes is generated in the polyethylene/silica nanocomposites. Nanocomposites with a nanoparticle concentration of 3 wt% and particle size of 15 nm suppress the accumulation of space charge effectively. The amount of space charge in the samples increases with the increase in elongation. At an elongation of 10%, packet-like space charge is generated in polyethylene/silica nanocomposites with the concentration of 5 wt% and particle sizes of 15 and 50 nm. The packet-like space charge in nanocomposites whose particle size is 50 nm is more obvious than that in nanocomposites whose particle size is 15 nm. The experiment results are explained by applying interface characteristics, dipole model, and induced dipole model.


2014 ◽  
Vol 670-671 ◽  
pp. 52-55
Author(s):  
Yan Chai ◽  
Wei Feng He ◽  
Guang Yu He ◽  
Yu Qin Li

To solve the crack and fracture problem in blade made of K403 alloy, the samples of K403 are laser shock processed and then the microstructure, microhardness, residual compressive stress and surface roughness of the samples are tested. The test results show that some grains are observed refined in the grain boundary of shock region, the microhardness improves in a depth of 0.8mm from the surface and the surface microhardness improves 16%, a residual compressive stress which is more than 450MPa is developed in a depth of 1mm from the surface, and obvious changes of the surface roughness are not tested.


2008 ◽  
Vol 389-390 ◽  
pp. 350-355
Author(s):  
Takeshi Harada ◽  
Takuya Semba

A truing technique that can be used to shape the tip of an electroformed diamond tool into a hemisphere and flatten diamond grains on the tool working surface at the same level as the bond face was developed. A polycrystalline diamond disk whose top surface roughened by electrical discharge machining was partially flattened by grinding was used as a truer. Diamond grains on the tool working surface were successfully flattened along the hemispherical tool profile when the grains mesh size of #1000 was employed. In addition, a grinding test using glasslike carbon as a work material revealed that a surface roughness of less than 50 nm Rz could be obtained in both cases when moving the tool on contour and scanning paths.


Author(s):  
Анатолий Кульков ◽  
Anatoliy Kul'kov ◽  
Максим Ларионов ◽  
Maksim Larionov

The investigation results of metal surface processing before industrial painting or protective coat application are shown. A pre-coloring processing defines quality of the coating applied, its adhesion with basic metal, uniformity and strength. The processes of surface roughness formation depending on processing modes and properties of the abrasive used are considered thoroughly.


Sign in / Sign up

Export Citation Format

Share Document