Effect of Grain Size in Silica Blasting Processes on the Surface Roughness of Medical Grade SS 316L

2020 ◽  
Vol 867 ◽  
pp. 134-139
Author(s):  
Teguh Dwi Widodo ◽  
Rudianto Raharjo ◽  
Redi Bintarto ◽  
Fikrul Akbar Alamsyah

The paper presents the effect of size and repetition process on silica blasting on the surface character of Medical Grade SS316L. In this study, topography and surface roughness of SS316L will be evaluated both using optical and stylus methods. Medical Grade SS316L was blasted using silica sand with a mesh size of 10-30 (then called K), mesh 40-60 (then called S), and mesh 70-90 (then called H). Silica blasting processes was carried out on the surface of Medical Grade SS316L at room temperature, 90° of nozzle direction, and 7 bar of nozzle pressure. The silica blasting process was carried out by varying the treatments of K, S, H, KH, and SH for 10 minutes each. The results show that roughness increases with the size of silica sand, moreover the repetition of the H process on the K and S (KH and SH process) will refine the surface roughness of the results of S and K processes but when compared to H is relatively coarse.

Author(s):  
Budi Saputra ◽  
Rieza Zulrian Aldio ◽  
Dedikarni

During this time the ship's hull often occurs due to corrosion levels of salt in the Indonesian sea varies. The repair process often done to overcome this problem is by sandblasting which aims to clean the metal from the surface of the rust and provide suitable surface roughness on the metal surface so that the coating material can stick properly. This study aims to determine the size of silica sand and the repetition of the sandblasting process on the value of surface roughness and cleanliness of the material. In this study the SS400 material was sandblasting using 12 mesh, 16 mesh and 20 mesh sand at 7 bar, spraying 1x and 2x. From the test results obtained at a particle size of 20 mesh, 7 bar pressure, repeated spraying 2x which results in a surface roughness of 19.80 µm and cleanliness results achieved according to standard SA 2 1/2 (SSPC-SP10) from these conditions obtained surface roughness values according with the standard surface roughness of sandblasting and the level of cleanliness achieved in accordance with ISO 8503 standards and has been allowed for application.


2018 ◽  
Vol 31 (1) ◽  
pp. 37 ◽  
Author(s):  
Iman Hameed Khudayer ◽  
Bushra Hashem Hussein Ali ◽  
Mohammed Hamid Mustafa ◽  
Ayser Jumah Ibrahim

  The Silver1Indium1Selenide (AgInSe2) (AIS) thin1films of (3001±20) nm thickness  have been1prepared2from the compound alloys2using thermal evaporation2 technique onto the glass2substrate at room temperature, with a deposition rate2(3±0.1) nm2sec-1. The2structural, optical and electrical3properties have been studied3at different annealing3temperatures (Ta=450, 550 and 650) K. The amount3or (concentration) of the elements3(Ag, In, Se) in the  prepared alloy3was verified using  an energy dispersive3x-ray spectrometer (EDS)3technology. X-ray diffraction3analysis shows that AIS alloy  prepared as (powder) and the thin films3are polycrystalline  of tetragonal3structure with preferential orientation3(112). The crystalline3size increases  as a function3of annealing temperature. The atomic force3microscope (AFM) technique  was used to examine3the  topography  and  estimate3the surface roughness, also the  average grain3size of the films. The results show3that the grain size increases3with annealing3temperature.   The optical4band gap of the films lies4in the range 1.6-1.9 eV. The films4appear to be4n-type indicating that the electrons4as a dominant charge4carrier. The electrical conductivity4increases  with a corresponding4increase in annealing4temperature.  


2014 ◽  
Vol 941-944 ◽  
pp. 1288-1292
Author(s):  
Dong Mei Zeng ◽  
Yin Yin Mu ◽  
Wan Liu ◽  
Hai Zhou ◽  
Fei Chen

Different substrate temperature of CdZnTe films and one with Al-induced crystallization have been investigated by XRD, AFM and UV-spectrophotometry. It was shown that, as the substrate temperature varied from room temperature to 400 °C, improving the substrate temperature helps to enhance the grain size of CdZnTe film, and favours the preferential orientation (111). Moreover, Al-induced crystallization method can effectively reduce the crystallization temperature of the CdZnTe film so that the film can be for high-quality oriented crystallization in a lower temperature. In addition, Al-induced crystallization can make the surface roughness of the film at a small value that facilitates the later application of the film.


2019 ◽  
Vol 12 (03) ◽  
pp. 1950032 ◽  
Author(s):  
Yuchen Deng ◽  
Yaming Zhang ◽  
Nanlong Zhang ◽  
Qiang Zhi ◽  
Bo Wang ◽  
...  

Pure dense silicon carbide (SiC) ceramics were obtained via the high-temperature physical vapor transport (HTPVT) method using graphite paper as the growth substrate. The phase composition, the evolution of microstructure, the thermal diffusivity and thermal conductivity at RT to 200∘C were investigated. The obtained samples had a relative density of higher than 98.7% and a large grain size of 1[Formula: see text]mm, the samples also had a room-temperature thermal conductivity of [Formula: see text] and with the temperature increased to 200∘C, the thermal conductivity still maintained at [Formula: see text].


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 607
Author(s):  
A. I. Alateyah ◽  
Mohamed M. Z. Ahmed ◽  
Yasser Zedan ◽  
H. Abd El-Hafez ◽  
Majed O. Alawad ◽  
...  

The current study presents a detailed investigation for the equal channel angular pressing of pure copper through two regimes. The first was equal channel angular pressing (ECAP) processing at room temperature and the second was ECAP processing at 200 °C for up to 4-passes of route Bc. The grain structure and texture was investigated using electron back scattering diffraction (EBSD) across the whole sample cross-section and also the hardness and the tensile properties. The microstructure obtained after 1-pass at room temperature revealed finer equiaxed grains of about 3.89 µm down to submicrons with a high density of twin compared to the starting material. Additionally, a notable increase in the low angle grain boundaries (LAGBs) density was observed. This microstructure was found to be homogenous through the sample cross section. Further straining up to 2-passes showed a significant reduction of the average grain size to 2.97 µm with observable heterogeneous distribution of grains size. On the other hand, increasing the strain up to 4-passes enhanced the homogeneity of grain size distribution. The texture after 4-passes resembled the simple shear texture with about 7 times random. Conducting the ECAP processing at 200 °C resulted in a severely deformed microstructure with the highest fraction of submicron grains and high density of substructures was also observed. ECAP processing through 4-passes at room temperature experienced a significant increase in both hardness and tensile strength up to 180% and 124%, respectively.


2014 ◽  
Vol 1033-1034 ◽  
pp. 435-438
Author(s):  
Ming Dong ◽  
Qiong Fang Shao

The continuous flocculator described in this article refers to a kind of continuous flocculation device designed to flocculate fermentation liquid. The honeycomb continuous flocculator is composed of a vessel and built-in trapezoid subassemblies, which divide the space within the vessel into multiple honeycomb channels. The length ratio between the longest diagonal of the regular hexagon and the axial length of the channel is within the range 0.01–0.04; and the internal surface roughness (Ra) of the channels should be 0 < Ra ≤ 0.2 μm. In contrast to current flocculator designs, the channels of the honeycomb continuous flocculator could control the floc grain size, grain fineness distribution in the fermentation liquid and flocculating time and decrease the flow resistance of the flocculating fermentation liquid and increase handling capacity. These capabilities improve solid-liquid separation efficiency for fermentation liquids. The flocculator could be used either for purification of industrial fermentation liquids or sewage treatment.


1995 ◽  
Vol 403 ◽  
Author(s):  
D. V. Dimitrov ◽  
A. S. Murthy ◽  
G. C. Hadjipanayis ◽  
C. P. SWANN

AbstractFe-O and Co-O films were prepared by DC magnetron sputtering in a mixture of Ar and O2 gases. By varying the oxygen to argon ratio, oxide films with stoichiometry FeO, Fe3O4, α-Fe2O3, CoO and Co3O4 were produced. TEM studies showed that the Fe – oxide films were polycrystalline consisting of small almost spherical grains, about 10 nm in size. Co-O films had different microstructure with grain size and shape dependent on the amount of oxygen. X-ray diffraction studies showed that the grains in Fe-O films were randomly oriented in contrast to Co-O films in which a <111> texture was observed. Pure FeO and α-Fe2O3 films were found to be superparamagnetic at room temperature but strongly ferromagnetic at low temperatures in contrast to the antiferromagnetic nature of bulk samples. A very large shift in the hysteresis loop, about 3800 Oe, was observed in field cooled Co-CoO films indicating the presence of a large unidirectional exchange anisotropy.


Author(s):  
Chao He ◽  
Ming Yuan ◽  
Bin Jiang ◽  
Lintao Liu ◽  
Qinghang Wang ◽  
...  

2021 ◽  
Vol 827 ◽  
pp. 142060
Author(s):  
Bingshu Wang ◽  
Huimin Liu ◽  
Yonggan Zhang ◽  
Baoxue Zhou ◽  
Liping Deng ◽  
...  

2006 ◽  
Vol 20 (02) ◽  
pp. 217-231 ◽  
Author(s):  
MUHAMMAD MAQBOOL ◽  
TAHIRZEB KHAN

Thin films of pure silver were deposited on glass substrate by thermal evaporation process at room temperature. Surface characterization of the films was performed using X-ray diffraction (XRD) and atomic force microscopy (AFM). Thickness of the films varied between 20 nm and 72.8 nm. XRD analysis provided a sharp peak at 38.75° from silver. These results indicated that the films deposited on glass substrates at room temperature are crystalline. Three-dimension and top view pictures of the films were obtained by AFM to study the grain size and its dependency on various factors. Average grain size increased with the thickness of the deposited films. A minimum grain size of 8 nm was obtained for 20 nm thick films, reaching 41.9 nm when the film size reaches 60 nm. Grain size was calculated from the information provided by the XRD spectrum and averaging method. We could not find any sequential variation in the grain size with the growth rate.


Sign in / Sign up

Export Citation Format

Share Document