scholarly journals Detection of spring wheat plants affected by powdery mildew using hyperspectral survey data

Author(s):  
T.A. Gurova ◽  
O.A. Dubrovskaja ◽  
O.V. Elkin ◽  
L.V. Maximov ◽  
I.A. Pestunov ◽  
...  

In laboratory experiments, spectral characteristics of three varieties of Siberian selection spring wheat affected under field conditions by powdery mildew (Blumeria graminis (DC.) Speer) were obtained using hyperspectral camera. The variety specificity of the reflectivity of wheat leaves affected by powdery mildew with the same severity has been established. A change in the leaves reflectivity depending on the severity was revealed. The most informative spectral indicator (index) for the powdery mildew detection has been determined.

2003 ◽  
Vol 83 (4) ◽  
pp. 725-728 ◽  
Author(s):  
R. L. Conner ◽  
A. D. Kuzyk ◽  
H. Su

The effect of powdery mildew (Blumeria graminis f. sp. tritici) on the grain yield and protein content of one susceptible, Springfield, and three moderately resistant cultivars, Fielder, AC Reed and AC Nanda, of soft white spring wheat (Triticum aestivum) was examined at two field locations near Lethbridge and Vauxhall, Alberta, in 1999 and 2000. At the start of heading, powdery mildew development was suppressed in half of the plots of each cultivar by a single spray application of the fungicide Tilt (propiconazole). Severe powdery mildew infection of the susceptible cultivar Springfield resulted in yield reductions ranging from 11.4 to 19.9%. The grain yield of the moderately resistant cultivar Fielder was significantly reduced at both sites in 1999 by 7.6–10.5% while AC Reed suffered a significant yield loss (7.6–9.1%) at Lethbridge in both years. The moderately resistant cultivar AC Nanda consistently had the lowest powdery mildew ratings and its yield was unaffected by the disease. A single fungicide application prevented disease buildup on the moderately resistant cultivars, but not on Springfield. The grain protein content of the moderately resistant cultivars was unaffected by powdery mildew, but it decreased in Springfield by 0.6–0.7%. Key words: Powdery mildew, Propiconazole, Blumeria graminis f. sp. tritici, wheat, Triticum aestivum, resistance


Author(s):  
Alexander V. Babosha

Abscisic acid (ABA) plays an important role in the regulation of protective processes under stresses of various nature. In contrast to abiotic stresses, when a plant and a pathogen interact, this phytohormone is in most cases a negative regulator of resistance. However, even with a similar nature of pathogenesis, ABA can produce different effects. For example, ABA treatment in different experiments induced either a decrease or an increase in the susceptibility of cereals to powdery mildew. The aim of this work was to study the immunomodulatory properties of exogenous ABA depending on its concentration in the pathosystem composed of wheat Triticum aestivum L. plants and powdery mildew pathogen Blumeria graminis (DC.) Speer f. sp. tritici (syn. Erysiphe graminis). We studied the change in the number of pathogen colonies on susceptible wheat leaves (Zarya and Tavrichanka varieties) when two-week-old seedlings were treated with various ABA concentrations (0–9 μM) before and immediately after they were infected. When whole plants were used in the experiment, ABA was added to Knop’s solution; in experiments with detached leaves floating in Petri dishes, aqueous solutions of the phytohormone were used. Our results show that the magnitude and direction of the effect of exogenous ABA on the number of colonies of the pathogen depends on its concentration and the time of application relative to the moment of infection. ABA concentration dependence was variable in form: similar concentrations could be inhibitory, resulting in the minimum number of colonies, or stimulating, with the maximum number of colonies. At the same time, the pre-infection use of ABA was more likely to be inhibitory. The non-monotonicity and variation of the form of concentration dependence could probably account for the contradictory literature data on the immunomodulatory properties of ABA. The complex nature of the concentration dependence and the corresponding variation in the immunological state within a fairly wide range seem to ensure the Abscisic acid (ABA) plays an important role in the regulation of protective processes under stresses of various nature. In contrast to abiotic stresses, when a plant and a pathogen interact, this phytohormone is in most cases a negative regulator of resistance. However, even with a similar nature of pathogenesis, ABA can produce different effects. For example, ABA treatment in different experiments induced either a decrease or an increase in the susceptibility of cereals to powdery mildew. The aim of this work was to study the immunomodulatory properties of exogenous ABA depending on its concentration in the pathosystem composed of wheat Triticum aestivum L. plants and powdery mildew pathogen Blumeria graminis (DC.) Speer f. sp. tritici (syn. Erysiphe graminis). We studied the change in the number of pathogen colonies on susceptible wheat leaves (Zarya and Tavrichanka varieties) when two-week-old seedlings were treated with various ABA concentrations (0–9 μM) before and immediately after they were infected. When whole plants were used in the experiment, ABA was added to Knop’s solution; in experiments with detached leaves floating in Petri dishes, aqueous solutions of the phytohormone were used. Our results show that the magnitude and direction of the effect of exogenous ABA on the number of colonies of the pathogen depends on its concentration and the time of application relative to the moment of infection. ABA concentration dependence was variable in form: similar concentrations could be inhibitory, resulting in the minimum number of colonies, or stimulating, with the maximum number of colonies. At the same time, the pre-infection use of ABA was more likely to be inhibitory. The non-monotonicity and variation of the form of concentration dependence could probably account for the contradictory literature data on the immunomodulatory properties of ABA. The complex nature of the concentration dependence and the corresponding variation in the immunological state within a fairly wide range seem to ensure themaintenance of equilibrium in the pathosystem and the chances for survival of both the host plant and the pathogen.


2017 ◽  
Vol 8 (2) ◽  
pp. 229-232 ◽  
Author(s):  
V. Yakushev ◽  
E. Kanash ◽  
D. Rusakov ◽  
S. Blokhina

The research concerns the changes of spectral characteristics of reflected radiation (360 to 1 000 nm) of spring wheat leaves under nitrogen deficiency and moderate soil drought. The efficiency of factorial influence (η2) on chlorophyll index was equal to 20% and 4% under nitrogen and water deficiency, respectively. Most significantly soil drought influenced the water index WRI (η2=55%) and the light diffusion index R800 (η2=28%), which was caused by changes in leaf structure. At low levels of nitrogen supply, these parameters did not change or changed only slightly (η2=2%). It may be deduced that the data base for crop monitoring in precision farming systems must contain a series of optical criteria for assessing specific and non-specific changes in optical characteristics of a crop canopy under the impact of various stress factors.


2011 ◽  
Vol 57 (3) ◽  
pp. 211-216 ◽  
Author(s):  
Jie Feng ◽  
Feng Wang ◽  
Geoff R. Hughes ◽  
Susan Kaminskyj ◽  
Yangdou Wei

The activity of esterase secreted by conidia of wheat powdery mildew fungus, Blumeria graminis f. sp. tritici, was assayed using indoxyl acetate hydrolysis, which generates indigo blue crystals. Mature, ungerminated, and germinating conidia secrete esterase(s) on artificial media and on plant leaf surfaces. The activity of these esterases was inhibited by diisopropyl fluorophosphate, which is selective for serine esterases. When conidia were inoculated on wheat leaves pretreated with diisopropyl fluorophosphate, both appressorial germ tube differentiation and symptom development were significantly impaired, indicating an important role of secreted serine esterases in wheat powdery mildew disease establishment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Peng Cheng ◽  
Zihao Wang ◽  
Yanyan Ren ◽  
Pengfei Jin ◽  
Kangjie Ma ◽  
...  

Wheat powdery mildew, caused by the obligate biotrophic ascomycete fungal pathogen Blumeria graminis f. sp. tritici (Bgt), is a major threat to wheat production worldwide. It is known that Arabidopsis thaliana glucan synthase-like 5 (AtGSL5) improves the resistance of wheat to powdery mildew by increasing its anti-penetration abilities. However, the function of glucan synthase-like (GSL) orthologs in crop species remains largely unknown. In this study, TaGSL22, a novel functional ortholog of AtGSL5, was isolated as the only Bgt-induced GSL gene in wheat. Phylogenetic analysis indicated that TaGSL22 was conserved within the group of Gramineae and showed a closer relationship to GSL orthologs from monocots than to those from dicots. The TaGSL22 transcript was highest in the wheat leaves, followed by stems then roots. TaGSL22 was localized in the cell membrane and cytoplasm of wheat protoplasts, as predicted by transmembrane structure analysis. In addition, expression of TaGSL22 was induced by the plant hormones ethylene (ETH) and salicylic acid (SA), but down-regulated by jasmonate (JA) and abscisic acid (ABA). The transcript level of TaGSL22 was up-regulated in the incompatible interaction between Bgt and wheat, whereas it remained relatively unchanged in the compatible interaction. Knocking down of TaGSL22 by virus-induced gene silencing (VIGS) induced a higher infection type in the wheat–Bgt interaction. The TaGSL22-silenced plants exhibited reduced resistance to Bgt, accompanied by decreased callose accumulation. Our study shows a conserved function of GSL genes in plant immunity associated with penetration resistance, and it indicates that TaGSL22 can be used to improve papilla composition and enhance resistance to wheat powdery mildew.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Javed Bahar Khan ◽  
Sonam Singh ◽  
Charul Kanchan ◽  
Pravir Kumar Gupta ◽  
Jitendra Kumar

Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 658
Author(s):  
Klaudia Goriewa-Duba ◽  
Adrian Duba ◽  
Elżbieta Suchowilska ◽  
Marian Wiwart

The main aim of this study was to analyze the genetic diversity of breeding lines derived from bread wheat and spelt (bread wheat cvs. Zebra, Torka and Kontesa; spelt breeding lines S10–S14) in terms of their resistance to infections caused by Blumeria graminis f. sp. tritici and Puccinia triticina Eriks. The genomes of all analyzed lines harbored the markers for Pm2a, Pm4b and Pm6a alleles, which confer resistance to the infection caused by B. graminis f. sp. tritici. The markers for Pm4c and Pm4a alleles were also identified in many objects. The high number of Pm markers was noted in the crosses Zebra × S11 and Zebra × S12 whose genomes harbored the markers for Pm2a, Pm3d, Pm4a-4c and Pm6. Most of the studied lines harbored the marker linked to the Lr10 gene, which encodes resistance to the infection caused by P. triticina in wheat. The analysis of the presence of markers linked to the resistance to infections caused by B. graminis f. sp. tritici and P. triticina demonstrated that Zebra × S12 was the most promising breeding line with the highest number of markers for genes/alleles encoding resistance to powdery mildew and leaf rust. This breeding line was also highly resistant to both pathogens under field conditions.


Sign in / Sign up

Export Citation Format

Share Document