Alterations in the Ghrelinergic System in Anorexia Nervosa Patients : Inputs From Animal Models

Author(s):  
Duriez Philibert
Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1412
Author(s):  
Katarzyna Piotrowska ◽  
Maciej Tarnowski

In recent years, adipose tissue has attracted a lot of attention. It is not only an energy reservoir but also plays important immune, paracrine and endocrine roles. BMAT (bone marrow adipose tissue) is a heterogeneous tissue, found mostly in the medullary canal of the long bones (tibia, femur and humerus), in the vertebrae and iliac crest. Adipogenesis in bone marrow cavities is a consequence of ageing or may accompany pathologies like diabetes mellitus type 1 (T1DM), T2DM, anorexia nervosa, oestrogen and growth hormone deficiencies or impaired haematopoiesis and osteoporosis. This paper focuses on studies concerning BMAT and its physiology in dietary interventions, like obesity in humans and high fat diet in rodent studies; and opposite: anorexia nervosa and calorie restriction in animal models.


2020 ◽  
Vol 14 ◽  
Author(s):  
Claire J. Foldi ◽  
Paul Liknaitzky ◽  
Martin Williams ◽  
Brian J. Oldfield

2021 ◽  
Vol 12 ◽  
Author(s):  
Jie Zhang ◽  
Stephanie C. Dulawa

Anorexia nervosa (AN) is a severe eating disorder that primarily affects young women and girls, and is characterized by abnormal restrictive feeding and a dangerously low body-mass index. AN has one of the highest mortality rates of any psychiatric disorder, and no approved pharmacological treatments exist. Current psychological and behavioral treatments are largely ineffective, and relapse is common. Relatively little basic research has examined biological mechanisms that underlie AN compared to other major neuropsychiatric disorders. A recent large-scale genome-wide association study (GWAS) revealed that the genetic architecture of AN has strong metabolic as well as psychiatric origins, suggesting that AN should be reconceptualized as a metabo-psychiatric disorder. Therefore, identifying the metabo-psychiatric mechanisms that contribute to AN may be essential for developing effective treatments. This review focuses on animal models for studying the metabo-psychiatric mechanisms that may contribute to AN, with a focus on the activity-based anorexia (ABA) paradigm. We also highlight recent work using modern circuit-dissecting neuroscience techniques to uncover metabolic mechanisms that regulate ABA, and encourage further work to ultimately identify novel treatment strategies for AN.


Author(s):  
Odile Viltart ◽  
Philibert Duriez ◽  
Virginie Tolle

Abstract The exact mechanisms linking metabolic and neuroendocrine adaptations to undernutrition and the pathophysiology of anorexia nervosa (AN) are not fully understood. AN is a psychiatric disorder of complex etiology characterized by extreme starvation while the disease is progressing into a chronic state. Metabolic and endocrine alterations associated to this disorder are part of a powerful response to maintain whole body energy homeostasis. But these modifications may also contribute to associated neuropsychiatric symptoms (reward abnormalities, anxiety, depression) and thus participate to sustain the disease. The current review presents data with both a clinical and basic research point of view on the role of nutritional and energy sensors with neuroendocrine actions in the pathophysiology of the disease, as they modulate metabolic responses, reproductive functions, stress responses as well as physical activity. While clinical data present a full description of changes occurring in AN, animal models that integrate either spontaneous genetic mutations or experimentally-induced food restriction with hyperactivity and/or social stress recapitulate the main metabolic and endocrine alterations of AN and provide mechanistic information between undernutrition state and symptoms of the disease. Further progress on the central and peripheral mechanism involved in the pathophysiology of eating disorders partly relies on the development and/or refinement of existing animal models to include recently identified genetic traits and better mimic the complex and multifactorial dimensions of the disease.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Sara Spadini ◽  
Mattia Ferro ◽  
Jacopo Lamanna ◽  
Antonio Malgaroli

Abstract Background The genesis of anorexia nervosa (AN), a severe eating disorder with a pervasive effect on many brain functions such as attention, emotions, reward processing, cognition and motor control, has not yet been understood. Since our current knowledge of the genetic aspects of AN is limited, we are left with a large and diversified number of biological, psychological and environmental risk factors, called into question as potential triggers of this chronic condition with a high relapse rate. One of the most valid and used animal models for AN is the activity-based anorexia (ABA), which recapitulates important features of the human condition. This model is generated from naïve rodents by a self-motivated caloric restriction, where a fixed schedule food delivery induces spontaneous increased physical activity. Aim In this review, we sought to provide a summary of the experimental research conducted using the ABA model in the pursuit of potential neurobiological mechanism(s) underlying AN. Method The experimental work presented here includes evidence for neuroanatomical and neurophysiological changes in several brain regions as well as for the dysregulation of specific neurochemical synaptic and neurohormonal pathways. Results The most likely hypothesis for the mechanism behind the development of the ABA phenotype relates to an imbalance of the neural circuitry that mediates reward processing. Evidence collected here suggests that ABA animals show a large set of alterations, involving regions whose functions extend way beyond the control of reward mechanisms and eating habits. Hence, we cannot exclude a primary role of these alterations from a mechanistic theory of ABA induction. Conclusions These findings are not sufficient to solve such a major enigma in neuroscience, still they could be used to design ad hoc further experimental investigation. The prospect is that, since treatment of AN is still challenging, the ABA model could be more effectively used to shed light on the complex AN neurobiological framework, thus supporting the future development of therapeutic strategies but also the identification of biomarkers and diagnostic tools. Plain English summary Anorexia Nervosa (AN) is a severe eating disorder with a dramatic effect on many functions of our brain, such as attention, emotions, cognition and motion control. Since our current knowledge of the genetic aspects behind the development of AN is still limited, many biological, psychological and environmental factors must be taken into account as potential triggers of this condition. One of the most valid animal models for studying AN is the activity-based anorexia (ABA). In this model, rodents spontaneously limit food intake and start performing increased physical activity on a running wheel, a result of the imposition of a fixed time schedule for food delivery. In this review, we provide a detailed summary of the experimental research conducted using the ABA model, which includes extended evidence for changes in the anatomy and function of the brain of ABA rodents. The hope is that such integrated view will support the design of future experiments that will shed light on the complex brain mechanisms behind AN. Such advanced knowledge is crucial to find new, effective strategies for both the early diagnosis of AN and for its treatment.


2021 ◽  
Vol 14 ◽  
Author(s):  
Sophie Scharner ◽  
Andreas Stengel

Anorexia nervosa is an eating disorder characterized by intense fear of gaining weight and a distorted body image which usually leads to low caloric intake and hyperactivity. The underlying mechanism and pathogenesis of anorexia nervosa is still poorly understood. In order to learn more about the underlying pathophysiology of anorexia nervosa and to find further possible treatment options, several animal models mimicking anorexia nervosa have been developed. The aim of this review is to systematically search different databases and provide an overview of existing animal models and to discuss the current knowledge gained from animal models of anorexia nervosa. For the systematic data search, the Pubmed—Medline database, Embase database, and Web of Science database were searched. After removal of duplicates and the systematic process of selection, 108 original research papers were included in this systematic review. One hundred and six studies were performed with rodents and 2 on monkeys. Eighteen different animal models for anorexia nervosa were used in these studies. Parameters assessed in many studies were body weight, food intake, physical activity, cessation of the estrous cycle in female animals, behavioral changes, metabolic and hormonal alterations. The most commonly used animal model (75 of the studies) is the activity-based anorexia model in which typically young rodents are exposed to time-reduced access to food (a certain number of hours a day) with unrestricted access to a running wheel. Of the genetic animal models, one that is of particular interest is the anx/anx mice model. Animal models have so far contributed many findings to the understanding of mechanisms of hunger and satiety, physical activity and cognition in an underweight state and other mechanisms relevant for anorexia nervosa in humans.


2019 ◽  
Vol 42 ◽  
Author(s):  
Nicole M. Baran

AbstractReductionist thinking in neuroscience is manifest in the widespread use of animal models of neuropsychiatric disorders. Broader investigations of diverse behaviors in non-model organisms and longer-term study of the mechanisms of plasticity will yield fundamental insights into the neurobiological, developmental, genetic, and environmental factors contributing to the “massively multifactorial system networks” which go awry in mental disorders.


Sign in / Sign up

Export Citation Format

Share Document