An integrated machine learning system for reservoir identification and production prediction

Author(s):  
Wei Liu ◽  
Zhangxin Chen ◽  
Yuan Hu ◽  
Liuyang Xu
2021 ◽  
pp. 1098612X2110012
Author(s):  
Jade Renard ◽  
Mathieu R Faucher ◽  
Anaïs Combes ◽  
Didier Concordet ◽  
Brice S Reynolds

Objectives The aim of this study was to develop an algorithm capable of predicting short- and medium-term survival in cases of intrinsic acute-on-chronic kidney disease (ACKD) in cats. Methods The medical record database was searched to identify cats hospitalised for acute clinical signs and azotaemia of at least 48 h duration and diagnosed to have underlying chronic kidney disease based on ultrasonographic renal abnormalities or previously documented azotaemia. Cases with postrenal azotaemia, exposure to nephrotoxicants, feline infectious peritonitis or neoplasia were excluded. Clinical variables were combined in a clinical severity score (CSS). Clinicopathological and ultrasonographic variables were also collected. The following variables were tested as inputs in a machine learning system: age, body weight (BW), CSS, identification of small kidneys or nephroliths by ultrasonography, serum creatinine at 48 h (Crea48), spontaneous feeding at 48 h (SpF48) and aetiology. Outputs were outcomes at 7, 30, 90 and 180 days. The machine-learning system was trained to develop decision tree algorithms capable of predicting outputs from inputs. Finally, the diagnostic performance of the algorithms was calculated. Results Crea48 was the best predictor of survival at 7 days (threshold 1043 µmol/l, sensitivity 0.96, specificity 0.53), 30 days (threshold 566 µmol/l, sensitivity 0.70, specificity 0.89) and 90 days (threshold 566 µmol/l, sensitivity 0.76, specificity 0.80), with fewer cats still alive when their Crea48 was above these thresholds. A short decision tree, including age and Crea48, predicted the 180-day outcome best. When Crea48 was excluded from the analysis, the generated decision trees included CSS, age, BW, SpF48 and identification of small kidneys with an overall diagnostic performance similar to that using Crea48. Conclusions and relevance Crea48 helps predict short- and medium-term survival in cats with ACKD. Secondary variables that helped predict outcomes were age, CSS, BW, SpF48 and identification of small kidneys.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Qingsong Xi ◽  
Qiyu Yang ◽  
Meng Wang ◽  
Bo Huang ◽  
Bo Zhang ◽  
...  

Abstract Background To minimize the rate of in vitro fertilization (IVF)- associated multiple-embryo gestation, significant efforts have been made. Previous studies related to machine learning in IVF mainly focused on selecting the top-quality embryos to improve outcomes, however, in patients with sub-optimal prognosis or with medium- or inferior-quality embryos, the selection between SET and DET could be perplexing. Methods This was an application study including 9211 patients with 10,076 embryos treated during 2016 to 2018, in Tongji Hospital, Wuhan, China. A hierarchical model was established using the machine learning system XGBoost, to learn embryo implantation potential and the impact of double embryos transfer (DET) simultaneously. The performance of the model was evaluated with the AUC of the ROC curve. Multiple regression analyses were also conducted on the 19 selected features to demonstrate the differences between feature importance for prediction and statistical relationship with outcomes. Results For a single embryo transfer (SET) pregnancy, the following variables remained significant: age, attempts at IVF, estradiol level on hCG day, and endometrial thickness. For DET pregnancy, age, attempts at IVF, endometrial thickness, and the newly added P1 + P2 remained significant. For DET twin risk, age, attempts at IVF, 2PN/ MII, and P1 × P2 remained significant. The algorithm was repeated 30 times, and averaged AUC of 0.7945, 0.8385, and 0.7229 were achieved for SET pregnancy, DET pregnancy, and DET twin risk, respectively. The trend of predictive and observed rates both in pregnancy and twin risk was basically identical. XGBoost outperformed the other two algorithms: logistic regression and classification and regression tree. Conclusion Artificial intelligence based on determinant-weighting analysis could offer an individualized embryo selection strategy for any given patient, and predict clinical pregnancy rate and twin risk, therefore optimizing clinical outcomes.


AI ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 34-47
Author(s):  
Borja Espejo-Garcia ◽  
Ioannis Malounas ◽  
Eleanna Vali ◽  
Spyros Fountas

In the past years, several machine-learning-based techniques have arisen for providing effective crop protection. For instance, deep neural networks have been used to identify different types of weeds under different real-world conditions. However, these techniques usually require extensive involvement of experts working iteratively in the development of the most suitable machine learning system. To support this task and save resources, a new technique called Automated Machine Learning has started being studied. In this work, a complete open-source Automated Machine Learning system was evaluated with two different datasets, (i) The Early Crop Weeds dataset and (ii) the Plant Seedlings dataset, covering the weeds identification problem. Different configurations, such as the use of plant segmentation, the use of classifier ensembles instead of Softmax and training with noisy data, have been compared. The results showed promising performances of 93.8% and 90.74% F1 score depending on the dataset used. These performances were aligned with other related works in AutoML, but they are far from machine-learning-based systems manually fine-tuned by human experts. From these results, it can be concluded that finding a balance between manual expert work and Automated Machine Learning will be an interesting path to work in order to increase the efficiency in plant protection.


1993 ◽  
Vol 18 (2-4) ◽  
pp. 209-220
Author(s):  
Michael Hadjimichael ◽  
Anita Wasilewska

We present here an application of Rough Set formalism to Machine Learning. The resulting Inductive Learning algorithm is described, and its application to a set of real data is examined. The data consists of a survey of voter preferences taken during the 1988 presidential election in the U.S.A. Results include an analysis of the predictive accuracy of the generated rules, and an analysis of the semantic content of the rules.


Author(s):  
Jonas Austerjost ◽  
Robert Söldner ◽  
Christoffer Edlund ◽  
Johan Trygg ◽  
David Pollard ◽  
...  

Machine vision is a powerful technology that has become increasingly popular and accurate during the last decade due to rapid advances in the field of machine learning. The majority of machine vision applications are currently found in consumer electronics, automotive applications, and quality control, yet the potential for bioprocessing applications is tremendous. For instance, detecting and controlling foam emergence is important for all upstream bioprocesses, but the lack of robust foam sensing often leads to batch failures from foam-outs or overaddition of antifoam agents. Here, we report a new low-cost, flexible, and reliable foam sensor concept for bioreactor applications. The concept applies convolutional neural networks (CNNs), a state-of-the-art machine learning system for image processing. The implemented method shows high accuracy for both binary foam detection (foam/no foam) and fine-grained classification of foam levels.


Sign in / Sign up

Export Citation Format

Share Document