scholarly journals PENGARUH TATA RUANG PADA PENGHAWAAN ALAMI RUMAH VERNAKULAR MELAYU PONTIANAK

2019 ◽  
Vol 6 (1) ◽  
pp. 53
Author(s):  
Tri Wibowo Caesariadi

Arsitektur vernakular adalah arsitektur yang memiliki respon yang baik terhadap iklim setempat. Hal ini juga berpengaruh terhadap kenyamanan termal dalam bangunan. Sebagai kota yang memiliki iklim tropis lembab, kenyamanan termal bangunan di Kota Pontianak banyak ditentukan oleh pergerakan angin yang terjadi di dalam bangunan. Adaptasi terhadap iklim pada rumah vernakular melayu Pontianak tidak hanya pada penggunaan elemen bangunan seperti bukaan dan bahan bangunan, juga pada tata ruang yang khas, di antaranya terdapat teras, ruang tengah serta pelataran belakang yang memisahkan rumah induk dengan rumah anak. Tujuan penelitian adalah melihat apakah tata ruang ini berpengaruh terhadap penghawaan alami di ruang dalam. Penelitian dilakukan dengan pengukuran di lapangan terhadap variabel kenyamanan termal, terutama temperatur dan kelajuan angin. Kemudian hasil pengukuran dianalisis secara deskriptif kuantitatif dan dilihat hubungan antara variabel dengan tata ruang, yaitu bagaimana temperatur dan kelajuan angin yang berbeda terjadi di setiap ruang, sehingga dapat ditarik kesimpulan. Hasil penelitian menunjukkan bahwa tata ruang di rumah vernakular melayu Pontianak, yaitu hadirnya teras dan pelataran belakang turut berperan dalam penghawaan alami yang terjadi di ruang dalam. Teras berperan dalam menurunkan temperatur luar yang masuk ke dalam bangunan (30,74 °C di ruang luar, lalu 29,84 °C di teras depan, dan 29,09 °C di ruang dalam). Pelataran belakang serta tata ruang dalam memberikan pergerakan angin yang lebih baik, ditunjukkan dengan selisih yang kecil antara kelajuan angin di ruang dalam dengan ruang luar pada rumah dengan pelataran belakang (0,51 m/s) dibandingkan dengan rumah tanpa pelataran belakang (0,77 m/s).Kata-kata Kunci: penghawaan alami, vernakular, tata ruangEFFECT OF SPACE LAYOUT TO NATURAL VENTILATION IN MELAYU PONTIANAK VERNACULAR HOUSEVernacular architecture is architecture that has good response to local climate. This also affects the thermal comfort in the building. As a city that has a humid tropical climate, the thermal comfort of buildings in Kota Pontianak is largely determined by the movement of the wind that occurs inside the building. Adaptation to climate in Pontianak's melayu vernacular house is not only on the use of building elements such as openings and building materials, but also on the typical spatial layout, including a terrace, a central room and a back veranda that separates the main house from the secondary house. The aim of the study was to see whether this spatial arrangement has an effect on natural ventilation in the indoor space. The study was conducted with measurements of thermal comfort variables, especially temperature and wind speed. Then the measurement results were analyzed descriptively quantitatively and viewed the relationship between variables and spatial arrangement – i.e. how the temperatures and wind speed differ in each rooms – so that conclusions could be drawn. The results showed that the layout in Pontianak's melayu vernacular house, namely the presence of terraces and back veranda, played a role in the natural ventilation that occurred in the indoor space. The terrace plays a role in reducing the outside temperature that enters the building (30.74 °C in the outdoor, then 29.84 °C on the front terrace, and 29.09 °C in the indoor). Back veranda and spatial layout provide better wind movement, indicated by small difference between the speed of wind in the indoor and the outdoor space of the house with back veranda (0.51 m/s) compared to the house without back veranda (0.77 m/s).Keywords: natural ventilation, vernacular, spatial layoutREFERENCESBoutet, Terry S. (1987) Controlling Air Movement: A Manual for Architects and Builders. New York: McGraw-Hill Book Company.Caesariadi, Tri Wibowo; Kalsum, Emilya (2011) Climatic Responsive Space in Melayu Pontianak House: A Preliminary Study. The CIB Inter-national Conference: Enhancing the Locality in Architecture, Housing and Urban Environment. January 22, 2011. Yogyakarta.Engin, N.; Vural, N.; Vural, S.; Sumerkan, M.R. (2005) “Climatic Effect in the Formation of Vernacular Houses in the Eastern Black Sea Region”. Building and Environment, Vol. 42. www. sciencedirect.comGutierrez, Jorge (2004) “Notes On the Seismic Adequacy of Vernacular Buildings”. Paper No. 5011. 13th World Conference on Earthquake Engineering. Vancouver.Koenigsberger, O.H.; Ingersoll, T.G.; Mayhew, Alan; Szokolay, S.V., (1973) Manual of Tropical Housing and Building, Part One: Climatic Design, London: Longman Group Limited.Lechner, Norbert (2001) Heating, Cooling, Lighting: Design Methods for Architects. New York: John Wiley & Sons, Inc.Lippsmeier, Georg (1997) Bangunan Tropis. Jakarta: Erlangga.Sozen, Mujgan S.; Gedik, Gulay Z. (2006) “Evaluation of Traditional Architecture in Terms of Building Physics : Old Diyarbakir Houses”. Build and Environment, Vol. 42. www.elsevier.com.Szokolay, Steven V. (2008) Introduction to Archi-tectural Science: The Basis of Sustainable Design, 2nd ed.. Oxford: Architectural Press Elsevier.

2021 ◽  
Vol 13 (17) ◽  
pp. 9570
Author(s):  
Ghada Elshafei ◽  
Silvia Vilcekova ◽  
Martina Zelenakova ◽  
Abdelazim M. Negm

This paper discusses the effect of various climatic conditions that pertain to passive design measurements and their relationships with building configurations to improve indoor thermal comfort based on the different climate zones in Egypt to support Egypt’s sustainability agenda 2030. We find the most appropriate design settings that can increase the indoor thermal comfort, such as building orientation and shape. These settings can be modeled using DesignBuilder software combined with Egyptian meteorological data. This software is used accompanied by computational fluid dynamics to numerically assess the outcomes of different changes, by simulating indoor climate condition factors such as wind speed and temperature. Natural ventilation simulations were performed for four different shapes to create comprehensive dataset scenarios covering a general range of shapes and orientations. Seven scenarios were optimized to put forward a series of building bioclimatic design approaches for the different characteristic regions. The results indicated that the temperature decreased by about 3.2%, and the air velocity increased within the study domain by 200% in the best and the worst cases, respectively, of the four different shapes. The results of the study gave evidence that the configuration of buildings, direction, and wind speed are very important factors for defining the natural ventilation within these domains to support the green building concept and the sustainable design for a better lifestyle.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Feiran Xue ◽  
Jingyuan Zhao

Under the trend of building green and comfortable development, effective control of building energy consumption has become one of the problems that countries are actively facing to solve. People’s demand for residential buildings has changed from the past survival type to a comfortable and livable type. The high level of heating energy consumption is worthy of in-depth study. In order to reduce energy consumption, realize the mapping of energy-saving concepts in buildings, and understand the energy consumption of different building materials and the influence of external factors on human thermal comfort, this book has conducted research on building thermal comfort based on energy-saving concepts. First of all, this article introduces the concept and application mode of energy-saving concepts in buildings and the concept of thermal comfort and the SET index of standard effective temperature, including the two-node model and the algorithm involved in the Fanger heat balance equation. In the experimental part, a model based on the concept of energy saving was designed to predict and analyze the energy consumption and thermal comfort effects of the building. In the analysis part, a comprehensive analysis of the effects of temperature, humidity, wind speed, and gender on thermal comfort, methods to improve thermal comfort, cumulative load changes with the heat transfer coefficient of windows, and the effects of windows of different materials on energy consumption was performed. At the same temperature, the wind speed is different, and the degree of heat sensation is also different. When the wind speed is 0.18 m/s and the temperature is 28°C, the thermal sensation is 0.32, and the human sensation is close to neutral. When the wind speed increases to 0.72 m/s, the heat sensation drops to −0.45, and the human body feels neutral and cool. It can be seen that the increase in wind speed has a certain compensation effect on the thermal sensation of the human body. When the wind speed does not change, increase the air temperature. For example, when the wind speed is 0.72 m/s, the temperature is 28°C, and the thermal sensation is −0.45, and when the temperature is increased to 29°C, the thermal sensation is 0.08, which shows that the temperature is improving the thermal sensation of the human body which has a certain offsetting effect. By studying the thermal comfort of buildings based on energy-saving concepts, it is possible to obtain the effect of external factors on thermal comfort, thereby optimizing building materials and using building materials with lower heat transfer coefficients to reduce heating energy consumption.


2013 ◽  
Vol 353-356 ◽  
pp. 3015-3019 ◽  
Author(s):  
Yu Tuan Chou ◽  
Shao Yi Hsia

There is highly relevant between thermal comfort and air quality in indoor spaces. Temperature, wind speed, and other related conditions are crucial to workplace and living environment. The commercial software of Solidworks Flow Simulation is applied to conduct a three-dimensional office environment model in this paper. The numerical simulation according to flow field characteristic analyzes different air controlling in varied closed partition. Through the two convergence conditions, MRT and OT, get the air characteristics of the grid and to calculate the PMV and to predict the PPD using the software. Therefore, designers can acquire more adequate information of thermal comfort, wind speed and temperature in preliminary design stage via the efficient simulation process.


2020 ◽  
Vol 12 (23) ◽  
pp. 9845
Author(s):  
Hsin-Hung Lin ◽  
Jui-Hung Cheng

Natural disasters, such as earthquakes, windstorms, and tsunamis, can occur all over the world, and disasters caused by human factors, such as civil wars, are also a source of major disturbance. The temporary rehousing of the population is a major problem when disasters occur. The installation of the combination house is time consuming, and tents cannot be used in the event of strong rain and wind; therefore, the container house is the most effective way of solving the rehousing problem. Natural ventilation is the main factor affecting the indoor air quality, thermal comfort, and health inside a container house, and solar radiation heat can also affect temperature changes inside. The air flow field inside a dwelling is very complex, and its flow mode is affected by inlet wind speed, inlet temperature, solar radiation heat, and the size of doors and windows, etc. In this paper, the influence of natural ventilation on the ventilation inside container houses is analyzed. Assuming that there is complex fluid motion in the activity space of the container house, it is not easy to use conventional methods to predict the flow rate. Based on the correlation analysis motion between the corresponding internal flow rates, the calculation and application method of flow is simplified from the results of the wind speed coefficient obtained previously. In addition, an analysis of flow characteristics in the container house is made; simulation analysis in the container house is made by carrying out the numerical analysis of several factors, including velocity field and temperature field. The variation state of the temperature of the environment and a numerical variation of the three-dimensional space are obtained by numerical calculation; the standard k-ε turbulence model is adopted to describe the turbulence phenomena of the fluid, and the mathematical model matched by B-spline surface is used for data analysis through the surface algorithm in order to deal with complex simulation data. The research results show that, regarding the influence of natural ventilation on container houses, the ideal relative position of openings includes the combination of asymmetric windows, followed by the central positioning of the door. The four-opening configurations, where better natural ventilation performance can be achieved, are located at different diagonal positions. The average flow velocity vector form, velocity amplitude, radiation temperature distribution, and the effect of the air volume coefficient of temperature change are analyzed. The research results show that the design of container houses can meet the requirements of air flow, such as the energy consumed by the thermal comfort space. Measurements taken over time and algorithms can also check the residents’ indoor natural ventilation and provide health care by the use of various sensors.


Author(s):  
Mahmoud A. Hassan

Low energy architect is a major target of building researchers and designers worldwide. Obviously, any portion of energy that can be saved in this respect can be directed to industrial processes, if any. Building energy consumption can be reduced through various systems such as air conditioning (a major building energy consumer), lighting, equipment, etc. In regions where energy is limited or scarce, air conditioning would have to be replaced by natural ventilation for the removal of the building heat load for thermal comfort. Also, energy conservation issues are being more important in hot arid regions, especially because the building are consuming more than 60% of electric energy generated and about 65% of this energy is consumed for cooling. There is a set of complex factors, which determine energy needs in building, such as solar radiation, type of A/C systems, building operation, thermal properties of the building envelop... etc. In the present decade the aim is to discuss the advantage of energy efficient building design. There is several ways to reduce the energy consumed for the human comfort process, but what is the most energy efficient or more energy saving from these ways. One of these is the insulation, which can be used for insulating the wall and the roof, which subjected to the large amount of the solar heat gain. The insulation of the roof is intended to maximize resident’s thermal comfort and minimize energy consumption of housing. The parameters, which are effect on the thermal performance of the roof, are the color, general construction, insulation and ventilation. This paper present the effect of insulation of the roof on the amount of energy consumed for different types of insulation in order to select the suitable insulation which give the minimum cost and maximum energy saving. This work was done using an energy software program (Visual DOE). This paper provided suggestions to improve the building construction for the thermal comfort. A parametric analysis was investigated for the economic analysis of various insulating building materials.


2021 ◽  
Vol 8 (2) ◽  
pp. 98
Author(s):  
Nur Rahmawati Syamsiyah ◽  
Hanifa Nur Izzati

Iklim tropis lembab di Indonesia menyebabkan rendahnya kecepatan angin, serta kelembapan dan suhu udara yang tinggi. Kelembapan tinggi menyebabkan sirkulasi udara tidak lancar dan berpengaruh pada kenyamanan termal. Masjid adalah bangunan untuk kegiatan ibadah, yang menuntut kenyamanan termal, selain kenyamanan audial. Upaya alat bantu penghawaan seperti kipas angin tidak akan bekerja optimal jika masjid tidak memiliki sistem sirkulasi udara yang baik. Masjid Al-Kautsar Kertonatan menarik untuk diteliti dari aspek penghawaan alami. Masjid berada di sudut pertigaan jalan kampung dan menghadap area persawahan. Saat masjid digunakan seluruh kipas angin dinyalakan, namun keluhan jamaah selalu muncul yaitu ketidaknyamanan termal, seperti rasa panas. Penelitian ini bertujuan untuk mengidentifikasi kualitas termal masjid Al-Kautsar Kertonatan, melalui metode kuantitatif pengukuran suhu udara, kelembapan udara dan kecepatan angin dengan alat thermohygrometer dan anemometer. Pengukuran termal dilakukan di dalam dan di luar ruang masjid secara bersamaan pada lima waktu salat. Selain pengukuran termal, dilakukan pula wawancara bebas kepada jamaah terkait kenyamanan termal. Hasil penelitian mengindikasikan pola aliran udara tidak merata dan tidak lancar di dalam ruangan, sehingga kualitas termal dalam kategori tidak nyaman dengan suhu udara rata-rata 31.0°C dan kecepatan angin rata-rata 0.1m/detik. Evaluasi subjektif mengindikasikan bahwa jamaah merasa nyaman apabila berada dekat jendela atau berada di tengah-tengah ruang, karena pada bagian itu aliran udara terasa. Solusi terbaik agar aliran merata di dalam ruang adalah redesain bukaan agar udara lebih banyak masuk, di samping itu perlu adanya penambahan vegetasi. MOSQUE THERMAL COMFORT STRATEGY (CASE STUDY OF AL-KAUTSAR MOSQUE, SUKOHARJO, CENTRAL JAVA) Indonesia's humid tropical climate causes low wind speed, as well as high humidity and air temperature. High humidity causes poor air circulation and affects thermal comfort. A mosque is a building for worship activities, which demands thermal comfort, in addition to audible comfort. Efforts for ventilation aids such as fans will not work optimally if the mosque does not have a good air circulation system. Al-Kautsar Kertonatan Mosque is interesting to study from the aspect of natural ventilation. The mosque is at the corner of the village road fork and overlooks the rice fields. When the mosque is used, all the fans are turned on, but complaints from the congregation always arise, namely thermal discomfort, such as feeling hot. This study aims to identify the thermal quality of the Al-Kautsar Kertonatan Mosque, through quantitative methods of measuring air temperature, humidity, and wind speed using thermohygrometer and anemometer. Thermal measurements are carried out inside and outside the mosque space simultaneously at five prayer times. In addition to thermal measurements, freed interviews were also conducted with the congregation regarding thermal comfort. The results indicate that the airflow pattern is not evenly distributed and not smooth so that the thermal quality is in the uncomfortable category with an average air temperature of 31.0°C and an average wind speed of 0.1m/second. The subjective evaluation indicated that pilgrims felt comfortable when they were near the window or in the middle of the room because in that part the airflow was felt. The best solution so that the flow is evenly distributed in the room is to redesign the opening to allow more air to enter, in addition to the need for additional vegetation.


Author(s):  
Elahe Mirabi ◽  
Nasrollahi Nazanin

<p>Designing urban facades is considered as a major factor influencing issues<br />such as natural ventilation of buildings and urban areas, radiations in the<br />urban canyon for designing low-energy buildings, cooling demand for<br />buildings in urban area, and thermal comfort in urban streets. However, so<br />far, most studies on urban topics have been focused on flat facades<br />without details of urban layouts. Hence, the effect of urban facades with<br />details such as the balcony and corbelling on thermal comfort conditions<br />and air flow behavior are discussed in this literature review. <strong>Aim</strong>: This<br />study was carried out to investigate the effective factors of urban facades,<br />including the effects of building configuration, geometry and urban<br />canyon’s orientation. <strong>Methodology and Results</strong>: According to the results,<br />the air flow behavior is affected by a wide range of factors such as wind<br />conditions, urban geometry and wind direction. Urban façade geometry<br />can change outdoor air flow pattern, thermal comfort and solar access.<br /><strong>Conclusion, significance and impact study</strong>: In particular, the geometry of<br />the facade, such as indentation and protrusion, has a significant effect on<br />the air flow and thermal behavior in urban facades and can enhance<br />outdoor comfort conditions. Also, Alternation in façade geometry can<br />affect pedestrians' comfort and buildings energy demands.</p>


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3311
Author(s):  
Víctor Pérez-Andreu ◽  
Carolina Aparicio-Fernández ◽  
José-Luis Vivancos ◽  
Javier Cárcel-Carrasco

The number of buildings renovated following the introduction of European energy-efficiency policy represents a small number of buildings in Spain. So, the main Spanish building stock needs an urgent energy renovation. Using passive strategies is essential, and thermal characterization and predictive tests of the energy-efficiency improvements achieving acceptable levels of comfort for their users are urgently necessary. This study analyzes the energy performance and thermal comfort of the users in a typical Mediterranean dwelling house. A transient simulation has been used to acquire the scope of Spanish standards for its energy rehabilitation, taking into account standard comfort conditions. The work is based on thermal monitoring of the building and a numerical validated model developed in TRNSYS. Energy demands for different models have been calculated considering different passive constructive measures combined with real wind site conditions and the behavior of users related to natural ventilation. This methodology has given us the necessary information to decide the best solution in relation to energy demand and facility of implementation. The thermal comfort for different models is not directly related to energy demand and has allowed checking when and where the measures need to be done.


2021 ◽  
pp. 152808372098654
Author(s):  
Linghui Peng ◽  
Lingling Shen ◽  
Weiren Fan ◽  
Zichuan Liu ◽  
Hongbo Qiu ◽  
...  

Due to the effects of climate changing, the importance of outdoor thermal comfort has been recognized, and has gained more and more research attentions. Unlike indoor space where air conditioning can be easily implemented, outdoor thermal comfort can only be achieved by localized thermal management. Using textile is a simple but energy-saving way to realize outdoor thermal comfort. Herein, we report the design of a smart thermal management film with the silver/vanadium dioxide/silver (Ag/VO2/Ag) sandwich structure prepared by one-dimensional (1 D) nanowires. It was found that the Ag/VO2/Ag sandwich film was able to lower the temperature by around 10 °C under intense infrared (IR) radiation. In addition, the Ag/VO2/Ag sandwich structure film showed a thermo-responsive electrical conductivity and an outstanding bending stability, due to network structure formed by nanowires. It was experimentally proved that this sandwich structure was superior to other layer structures in IR shielding performance and thermo-responsive electrical conductivity. The as-prepared Ag/VO2/Ag sandwich structure film has great potential for various applications such as wearable devices, flexible electronics, medical monitors and smart IR radiation management.


Sign in / Sign up

Export Citation Format

Share Document