scholarly journals Reduced Fouling Ultrafiltration Membranes via In-Situ Polymerisation Using Polydopamine Functionalised Titanium Oxide

Author(s):  
Muayad al-Shaeli ◽  
Hanaa M. Hegab ◽  
Xiya Fang ◽  
Lizhong He ◽  
Chang Liu ◽  
...  

The trade-off phenomenon between selectivity and permeation flux is a major challenge in pressure-driven membranes, and specifically for ultrafiltration membranes. Currently, many research studies have been performed to try to increase permeability while maintaining the rejection at a high level. However, in most of these studies, the improvement of permeability was accompanied by a decrease in rejection or vice versa. To tackle this problem, TiO2 nanoparticles were attached on the surface of PES membranes using polydopamine as adhesive agent. In general, it is quite challenging to attach/bind TiO2 on the surface of membranes due to agglomeration of nanoparticles. Therefore, we developed a practical, simple and a scalable method to attach TiO2 nanoparticles (NPs) on the top surface of membrane using one-step dip coating. Experimental results revealed that the modified layer enhanced the hydrophilicity of the PES UF membranes as confirmed by the decrease of contact angle from. As a result, the modified membranes exhibited a significant improvement in anti-fouling properties, with 12 times higher water permeation flux (962 LMH for pDA-f-TiO2-PES30) as compared to the pristine PES membranes (79.9 LMH). The static adsorption of BSA on the surface of membranes was reduced from (60 µg/cm2 for pristine PES to 21 µg/cm2 for pDA-f-TiO2- PES120). Furthermore, the modified PES membranes displayed a higher flux recovery ratio (97%) and fouling reversibility (98.62%) than pristine PES membrane (37.63%). Also, the coated PES membranes bestowed a good antibacterial property relative to the pristine one. Besides, the membranes showed better physical and chemical stability as compared with unmodified PES membranes. Thus, this study provided a facile approach for enhancing the anti-fouling performance of PES ultrafiltration membranes.

2020 ◽  
Author(s):  
Muayad al-Shaeli ◽  
Hanaa M. Hegab ◽  
Xiya Fang ◽  
Lizhong He ◽  
Chang Liu ◽  
...  

The trade-off phenomenon between selectivity and permeation flux is a major challenge in pressure-driven membranes, and specifically for ultrafiltration membranes. Currently, many research studies have been performed to try to increase permeability while maintaining the rejection at a high level. However, in most of these studies, the improvement of permeability was accompanied by a decrease in rejection or vice versa. To tackle this problem, TiO2 nanoparticles were attached on the surface of PES membranes using polydopamine as adhesive agent. In general, it is quite challenging to attach/bind TiO2 on the surface of membranes due to agglomeration of nanoparticles. Therefore, we developed a practical, simple and a scalable method to attach TiO2 nanoparticles (NPs) on the top surface of membrane using one-step dip coating. Experimental results revealed that the modified layer enhanced the hydrophilicity of the PES UF membranes as confirmed by the decrease of contact angle from. As a result, the modified membranes exhibited a significant improvement in anti-fouling properties, with 12 times higher water permeation flux (962 LMH for pDA-f-TiO2-PES30) as compared to the pristine PES membranes (79.9 LMH). The static adsorption of BSA on the surface of membranes was reduced from (60 µg/cm2 for pristine PES to 21 µg/cm2 for pDA-f-TiO2- PES120). Furthermore, the modified PES membranes displayed a higher flux recovery ratio (97%) and fouling reversibility (98.62%) than pristine PES membrane (37.63%). Also, the coated PES membranes bestowed a good antibacterial property relative to the pristine one. Besides, the membranes showed better physical and chemical stability as compared with unmodified PES membranes. Thus, this study provided a facile approach for enhancing the anti-fouling performance of PES ultrafiltration membranes.


2020 ◽  
Author(s):  
Muayad al-Shaeli ◽  
Hanaa M. Hegab ◽  
Xiya Fang ◽  
Lizhong He ◽  
Chang Liu ◽  
...  

The trade-off phenomenon between selectivity and permeation flux is a major challenge in pressure-driven membranes, and specifically for ultrafiltration membranes. Currently, many research studies have been performed to try to increase permeability while maintaining the rejection at a high level. However, in most of these studies, the improvement of permeability was accompanied by a decrease in rejection or vice versa. To tackle this problem, TiO2 nanoparticles were attached on the surface of PES membranes using polydopamine as adhesive agent. In general, it is quite challenging to attach/bind TiO2 on the surface of membranes due to agglomeration of nanoparticles. Therefore, we developed a practical, simple and a scalable method to attach TiO2 nanoparticles (NPs) on the top surface of membrane using one-step dip coating. Experimental results revealed that the modified layer enhanced the hydrophilicity of the PES UF membranes as confirmed by the decrease of contact angle from. As a result, the modified membranes exhibited a significant improvement in anti-fouling properties, with 12 times higher water permeation flux (962 LMH for pDA-f-TiO2-PES30) as compared to the pristine PES membranes (79.9 LMH). The static adsorption of BSA on the surface of membranes was reduced from (60 µg/cm2 for pristine PES to 21 µg/cm2 for pDA-f-TiO2- PES120). Furthermore, the modified PES membranes displayed a higher flux recovery ratio (97%) and fouling reversibility (98.62%) than pristine PES membrane (37.63%). Also, the coated PES membranes bestowed a good antibacterial property relative to the pristine one. Besides, the membranes showed better physical and chemical stability as compared with unmodified PES membranes. Thus, this study provided a facile approach for enhancing the anti-fouling performance of PES ultrafiltration membranes.


Author(s):  
N. Chin ◽  
S. O. Lai ◽  
K. C. Chong ◽  
S. S. Lee ◽  
C. H. Koo ◽  
...  

The study was concerned with the treatment of tank dewatering produced water using hybrid microfiltration (MF) and ultrafiltration (UF) processes. The pre-treatment MF membrane was fabricated with polyethersulfone (PES), n-methyl-2-pyrrolidone (NMP) and polyvinylpyrrolidone (PVP). The UF membranes meanwhile contained additional component, i.e., titanium dioxide (TiO2) nanoparticles in the range of zero to 1.0 wt.%. The membrane performances were analysed with respect to permeate flux, oil removal and flux recovery ratio. An increase in TiO2 nanoparticles enhanced the pore formation, porosity and pure water permeability due to improved hydrophilicity. The permeate flux of UF membranes increased with the increase of TiO2 nanoparticles and pressure. The oil removal rate by MF process was only 52.35%, whereas the oil rejection efficiency was between 82.34% and 95.71% for UF process. It should be highlighted that the overall oil removal rate could achieve as high as 97.96%. Based on the results, the PES membrane incorporated with 1.0 wt.% TiO2 was proved to be the most promising membrane at a transmembrane pressure of 3 bar. Although 1.0 M NaOH solution could be used as cleaning agent to recover membrane water flux, it is not capable of achieving good results as only 52.18% recovery rate was obtained.


2021 ◽  
Vol 01 ◽  
Author(s):  
Yongfeng Mu ◽  
Jun Liu ◽  
Han Feng ◽  
Guibin Wang

Background: Hydrophilic nanomaterials have been extensively exploited their applications in the field of hybrid water treatment membranes. However, some of the modification process to nanomaterials may be complicated and the nonselective pores caused by the poor compatibility between nanoparticles and the polymer matrix impair the rejection efficiency for ultrafiltration application. Thus it is highly desirable to develop a kind of effective nano dopant with favorable compatibility by a facile way for the preparation of ultrafiltration membranes. Objective: The aim of this study was to fabricate a novel environmentally friendly and low-cost nano additive with good compatibility for the preparation of ultrafiltration membranes. Methods: Hydroxyapatite nanotubes were prepared via a biomimetic process and then SA was coated on the surface of hydroxyapatite nanotubes. Subsequently, a series of hybrid ultrafiltration membranes was fabricated with different amount of modified HANTs and polyethersulfone (PES). Results: Exhaustive characterizations were conducted for the membranes including hydrophilicity, porosity, mean pore size, morphologies and UF performance test. The highest water flux of the hybrid membranes displayed 1.9 times that of original PES membrane. Meanwhile, the hybrid membrane with 0.2% hydroxyapatite nanotubes obtained elevated antifouling ability, achieving flux recovery ratio of 85.6%. Conclusion: The facile coating of SA endowed the nanotubes improved hydrophilicity and meanwhile enhanced the compatibility between PES and HANTs. This work provides a facile way in the construction of green nanofillers and promising results in preparation of hybrid UF membranes.


2019 ◽  
Vol 5 (12) ◽  
pp. 2162-2171 ◽  
Author(s):  
Peng Wu ◽  
Xu Tang ◽  
Yuansen Liu ◽  
Ling Lin ◽  
Changan Xu ◽  
...  

Interfacial polymerization was used to make a composite membrane between alginate and trimesoyl chloride on the surface of a polyether sulfone membrane, which was defined as an alginate-coated polyether sulfone composite membrane (A/PES membrane).


Membranes ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 366
Author(s):  
Rana J. Kadhim ◽  
Faris H. Al-Ani ◽  
Muayad Al-shaeli ◽  
Qusay F. Alsalhy ◽  
Alberto Figoli

The application of membrane technology to remove pollutant dyes in industrial wastewater is a significant development today. The modification of membranes to improve their properties has been shown to improve the permeation flux and removal efficiency of the membrane. Therefore, in this work, graphene oxide nanoparticles (GO-NPs) were used to modify the polyethersulfone (PES) membrane and prepare mixed matrix membranes (MMMs). This research is dedicated to using two types of very toxic dyes (Acid Black and Rose Bengal) to study the effect of GO on PES performance. The performance and antifouling properties of the new modified membrane were studied using the following: FTIR, SEM, AFM, water permeation flux, dye removal and fouling, and by investigating the influence of GO-NPs on the structure. After adding 0.5 wt% of GO, the contact angle was the lowest (39.21°) and the permeable flux of the membrane was the highest. The performance of the ultrafiltration (UF) membrane displayed a rejection rate higher than 99% for both dyes. The membranes showed the highest antifouling property at a GO concentration of 0.5 wt%. The long-term operation of the membrane fabricated from 0.5 wt% GO using two dyes improved greatly over 26 d from 14 d for the control membrane, therefore higher flux can be preserved.


2020 ◽  
Author(s):  
James McDonagh ◽  
William Swope ◽  
Richard L. Anderson ◽  
Michael Johnston ◽  
David J. Bray

Digitization offers significant opportunities for the formulated product industry to transform the way it works and develop new methods of business. R&D is one area of operation that is challenging to take advantage of these technologies due to its high level of domain specialisation and creativity but the benefits could be significant. Recent developments of base level technologies such as artificial intelligence (AI)/machine learning (ML), robotics and high performance computing (HPC), to name a few, present disruptive and transformative technologies which could offer new insights, discovery methods and enhanced chemical control when combined in a digital ecosystem of connectivity, distributive services and decentralisation. At the fundamental level, research in these technologies has shown that new physical and chemical insights can be gained, which in turn can augment experimental R&D approaches through physics-based chemical simulation, data driven models and hybrid approaches. In all of these cases, high quality data is required to build and validate models in addition to the skills and expertise to exploit such methods. In this article we give an overview of some of the digital technology demonstrators we have developed for formulated product R&D. We discuss the challenges in building and deploying these demonstrators.<br>


2020 ◽  
Vol 174 ◽  
pp. 03017
Author(s):  
Andrey Kudrevatykh ◽  
Andrey Ashcheulov ◽  
Alena Ashcheulova ◽  
Kumis Urazbaeva

The primary task of all enterprises in mining industry is to increase the durability and reliability of the mining complex. These very indicators provide nonstop minerals mining, and as a result, productivity increases. Indicators maintaining at high level can be achieved by different ways, but the most effective method is repair-in-place diagnosis of the actual technical condition of the main units and assemblies of equipment, as it is less costly and the most informative. To identify gear malfunctions, the physical and chemical analysis of the used oil is used to determine metallic impurities. A comparative analysis of wear products accumulation in rotary gears of mining excavators and gearboxes of the motor-wheel of dump trucks revealed the similarity of mathematical models for the determination of metallic impurities in used oil. The “universal” mathematical model is given in the paper; it allows to determine the actual technical condition of gearboxes for various equipment with a few assumptions. Moreover, the model takes into account various indicators of the environment, used oil, as well as the operating parameters of the equipment.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1710 ◽  
Author(s):  
Mirjalal Babayev ◽  
Hongbo Du ◽  
Venkata S. V. Botlaguduru ◽  
Raghava R. Kommalapati

Unconventional oil and gas extraction generates large quantities of produced water (PW). Due to strict environmental regulations, it is important to recover and reuse PW. In this study, commercial polyethersulfone (PES) ultrafiltration (UF) membranes were surface-modified with zwitterionic polymer 3-(3,4-Dihydroxyphenyl)-l-alanine (l-DOPA) solution to alleviate membrane fouling during the ultrafiltration of shale oil PW of the Permian Basin. UF membranes were coated in l-DOPA solution by using a dip coating technique. Membrane characterization tests confirmed successful l-DOPA coating on UF membranes. While performing the experiments, permeate flux behaviors of the uncoated and coated membranes and antifouling resistance of the zwitterionic coating were evaluated. Among the coated UF membranes with varying coating times from one day to three days, the three-day coated UF membrane showed a good flux performance and the highest fouling resistance. The flux reduced by 38.4% for the uncoated membrane, while the reduction was 16% for the three-day coated membrane after the 5 h ultrafiltration of PW. Both improvements of the flux performance and recovery ratio are attributed to a negatively-charged surface developed on the membranes after the zwitterionic coating. The UF pretreatment also improved the flux behavior of the later forward osmosis (FO) process for PW treatment.


Sign in / Sign up

Export Citation Format

Share Document