scholarly journals A Potential–dependent Thiele Modulus to Quantify the Effectiveness of Porous Electrocatalysts

Author(s):  
Charles Wan ◽  
Katharine Greco ◽  
Amira Alazmi ◽  
Robert Darling ◽  
Yet- Ming Chiang ◽  
...  

<p>Electrochemical reactors often employ high surface area electrocatalysts to accelerate volumetric reaction rates and increase productivity. While electrocatalysts can alleviate kinetic overpotentials, diffusional resistances at the pore-scale often prevent full catalyst utilization. The effect of intraparticle diffusion on the overall reaction rate can be quantified through an effectiveness factor expression governed by the Thiele modulus parameter. This analytical approach is integral to the development of catalytic structures for thermochemical processes and can be extended to electrochemical processes provided the relationship between reaction kinetics and electrode overpotential is incorporated. Here, we derive a potential-dependent Thiele modulus to quantify the effectiveness factor for porous electrocatalytic structures. We apply this mathematical framework to spherical microparticles as a function of applied overpotential across catalyst properties and reactant characteristics. The relative effects of kinetics and mass transport are related to overall reaction rates, revealing markedly lower catalyst utilization at increasing overpotential. Subsequently, we generalize the analysis to alternative catalyst shapes and provide guidance on the design of porous catalytic materials for use in electrochemical reactors.</p>

2021 ◽  
Author(s):  
Charles Wan ◽  
Katharine Greco ◽  
Amira Alazmi ◽  
Robert Darling ◽  
Yet- Ming Chiang ◽  
...  

<p>Electrochemical reactors often employ high surface area electrocatalysts to accelerate volumetric reaction rates and increase productivity. While electrocatalysts can alleviate kinetic overpotentials, diffusional resistances at the pore-scale often prevent full catalyst utilization. The effect of intraparticle diffusion on the overall reaction rate can be quantified through an effectiveness factor expression governed by the Thiele modulus parameter. This analytical approach is integral to the development of catalytic structures for thermochemical processes and can be extended to electrochemical processes provided the relationship between reaction kinetics and electrode overpotential is incorporated. Here, we derive a potential-dependent Thiele modulus to quantify the effectiveness factor for porous electrocatalytic structures. We apply this mathematical framework to spherical microparticles as a function of applied overpotential across catalyst properties and reactant characteristics. The relative effects of kinetics and mass transport are related to overall reaction rates, revealing markedly lower catalyst utilization at increasing overpotential. Subsequently, we generalize the analysis to alternative catalyst shapes and provide guidance on the design of porous catalytic materials for use in electrochemical reactors.</p>


Biocatalysis ◽  
2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Enzo Laurenti ◽  
Ardson dos Santos Vianna Jr.

AbstractMicrofluidic reaction devices are a very promising technology for chemical and biochemical processes. In microreactors, the micro dimensions, coupled with a high surface area/volume ratio, permit rapid heat exchange and mass transfer, resulting in higher reaction yields and reaction rates than in conventional reactors. Moreover, the lower energy consumption and easier separation of products permit these systems to have a lower environmental impact compared to macroscale, conventional reactors. Due to these benefits, the use of microreactors is increasing in the biocatalysis field, both by using enzymes in solution and their immobilized counterparts. Following an introduction to the most common applications of microreactors in chemical processes, a broad overview will be given of the latest applications in biocatalytic processes performed in microreactors with free or immobilized enzymes. In particular, attention is given to the nature of the materials used as a support for the enzymes and the strategies employed for their immobilization. Mathematical and engineering aspects concerning fluid dynamics in microreactors were also taken into account as fundamental factors for the optimization of these systems.


Author(s):  
Nathan Siegel ◽  
Richard Diver ◽  
James E. Miller ◽  
Terry Garino ◽  
Stephanie Livers

Metal-oxide based thermochemical cycles, such as those including a class of iron containing materials commonly known as ferrites, involve two reaction steps: a thermal reduction at temperatures up to 1600 °C driven by a solar energy input, and a lower temperature exothermic oxidation in the presence of either carbon dioxide or water. In order to maximize performance, the reactive materials must be arranged into structures that provide an effective interface for the direct absorption of concentrated solar energy and also have relatively high surface area to support rapid chemical reactions. In this paper we discuss the attributes of reactive structures for solar thermochemical processes as well as some of the fabrication techniques currently under development at Sandia National Labs. One of these structures has been demonstrated on-sun in a two step carbon dioxide splitting cycle. The results, given in this paper, indicate that performance may be improved as the fraction of the total directly illuminated surface area is increased, reducing the need to rely on conduction or convection to distribute heat throughout the material.


1993 ◽  
Vol 333 ◽  
Author(s):  
D. J. Wronkiewicz

ABSTRACTThe release of glass components into solution, including radionuclides, may be influenced by the presence of radiolytically produced nitric acid, carboxylic acid, and transient water dissociation products such as ·OH and O2-. Under batch test conditions, glass corrosion has been shown to increase up to a maximum of three-to five-fold in irradiated tests relative to nonirradiated tests, while in other studies the presence of radiolytic products has actually decreased glass corrosion rates. Bicarbonate groundwaters will buffer against pH decreases and changes in corrosion rates. Under high surface area-to-solution volume (S/V) conditions, the bicarbonate buffering reservoir may be quickly overwhelmed by radiolytic acids that are concentrated in the thin films of water contacting the samples. Glass reaction rates have been shown to increase up to 10-to-15-fold due to radiation exposure under high S/V conditions.Radiation damage to solid glass materials results in bond damage and atomic displacements. This type of damage has been shown to increase the release rates of glass components up to four-fold during subsequent corrosion tests, although under actual disposal conditions, glass annealing processes may negate the solid radiation damage effects.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1500
Author(s):  
Sanjay Gopal Ullattil ◽  
Janez Zavašnik ◽  
Ksenija Maver ◽  
Matjaž Finšgar ◽  
Nataša Novak Tušar ◽  
...  

The novelty of this work was to prepare a series of defect-rich colored TiO2 nanostructures, using a peroxo solvothermal-assisted, high-pressure nitrogenation method. Among these solids, certain TiO2 materials possessed a trace quantity of anatase–rutile heterojunctions, which are beneficial in obtaining high reaction rates in photocatalytic reactions. In addition, high surface area (above 100 m2/g), even when utilizing a high calcination temperature (500 °C), and absorption of light at higher wavelengths, due to the grey color of the synthesized titania, were observed as an added advantage for photocatalytic hydroxyl radical formation. In this work, we adopted a photoluminescent probe method to monitor the temporal evolution of hydroxyl radicals. As a result, promising hydroxyl radical formations were observed for all the colored samples synthesized at 400 and 500 °C, irrespective of the duration of calcination.


Author(s):  
Frances M. Ross ◽  
Peter C. Searson

Porous semiconductors represent a relatively new class of materials formed by the selective etching of a single or polycrystalline substrate. Although porous silicon has received considerable attention due to its novel optical properties1, porous layers can be formed in other semiconductors such as GaAs and GaP. These materials are characterised by very high surface area and by electrical, optical and chemical properties that may differ considerably from bulk. The properties depend on the pore morphology, which can be controlled by adjusting the processing conditions and the dopant concentration. A number of novel structures can be fabricated using selective etching. For example, self-supporting membranes can be made by growing pores through a wafer, films with modulated pore structure can be fabricated by varying the applied potential during growth, composite structures can be prepared by depositing a second phase into the pores and silicon-on-insulator structures can be formed by oxidising a buried porous layer. In all these applications the ability to grow nanostructures controllably is critical.


Author(s):  
A. K. Datye ◽  
D. S. Kalakkad ◽  
L. F. Allard ◽  
E. Völkl

The active phase in heterogeneous catalysts consists of nanometer-sized metal or oxide particles dispersed within the tortuous pore structure of a high surface area matrix. Such catalysts are extensively used for controlling emissions from automobile exhausts or in industrial processes such as the refining of crude oil to produce gasoline. The morphology of these nano-particles is of great interest to catalytic chemists since it affects the activity and selectivity for a class of reactions known as structure-sensitive reactions. In this paper, we describe some of the challenges in the study of heterogeneous catalysts, and provide examples of how electron holography can help in extracting details of particle structure and morphology on an atomic scale.Conventional high-resolution TEM imaging methods permit the image intensity to be recorded, but the phase information in the complex image wave is lost. However, it is the phase information which is sensitive at the atomic scale to changes in specimen thickness and composition, and thus analysis of the phase image can yield important information on morphological details at the nanometer level.


Author(s):  
A. Sachdev ◽  
J. Schwank

Platinum - tin bimetallic catalysts have been primarily utilized in the chemical industry in the catalytic reforming of petroleum fractions. In this process the naphtha feedstock is converted to hydrocarbons with higher octane numbers and high anti-knock qualities. Most of these catalysts contain small metal particles or crystallites supported on high surface area insulating oxide supports. The determination of the structure and composition of these particles is crucial to the understanding of the catalytic behavior. In a bimetallic catalyst it is important to know how the two metals are distributed within the particle size range and in what way the addition of a second metal affects the size, structure and composition of the metal particles. An added complication in the Pt-Sn system is the possibility of alloy formation between the two elements for all atomic ratios.


2018 ◽  
Author(s):  
Srimanta Pakhira ◽  
Jose Mendoza-Cortes

<div>Covalent organic frameworks (COFs) have emerged as an important class of nano-porous crystalline materials with many potential applications. They are intriguing platforms for the design of porous skeletons with special functionality at the molecular level. However, despite their extraordinary properties, it is difficult to control their electronic properties, thus hindering the potential implementation in electronic devices. A new form of nanoporous material, COFs intercalated with first row transition metal is proposed to address this fundamental drawback - the lack of electronic tunability. Using first-principles calculations, we have designed 31 new COF materials <i>in-silico</i> by intercalating all of the first row transition metals (TMs) with boroxine-linked and triazine-linked COFs: COF-TM-x (where TM=Sc-Zn and x=3-5). This is a significant addition considering that only 187 experimentally COFs structures has been reported and characterized so far. We have investigated their structure and electronic properties. Specifically, we predict that COF's band gap and density of states (DOSs) can be controlled by intercalating first row transition metal atoms (TM: Sc - Zn) and fine tuned by the concentration of TMs. We also found that the $d$-subshell electron density of the TMs plays the main role in determining the electronic properties of the COFs. Thus intercalated-COFs provide a new strategy to control the electronic properties of materials within a porous network. This work opens up new avenues for the design of TM-intercalated materials with promising future applications in nanoporous electronic devices, where a high surface area coupled with fine-tuned electronic properties are desired.</div>


Author(s):  
Kailun Yang ◽  
Recep Kas ◽  
Wilson A. Smith

<p>This study evaluated the performance of the commonly used strong buffer electrolytes, i.e. phosphate buffers, during CO<sub>2</sub> electroreduction in neutral pH conditions by using in-situ surface enhanced infrared absorption spectroscopy (SEIRAS). Unfortunately, the buffers break down a lot faster than anticipated which has serious implications on many studies in the literature such as selectivity and kinetic analysis of the electrocatalysts. Increasing electrolyte concentration, surprisingly, did not extend the potential window of the phosphate buffers due to dramatic increase in hydrogen evolution reaction. Even high concentration phosphate buffers (1 M) break down within the potentials (-1 V vs RHE) where hydrocarbons are formed on copper electrodes. We have extended the discussion to high surface area electrodes by evaluating electrodes composed of copper nanowires. We would like highlight that it is not possible to cope with high local current densities on these high surface area electrodes by using high buffer capacity solutions and the CO<sub>2</sub> electrocatalysts are needed to be evaluated by casting thin nanoparticle films onto inert substrates as commonly employed in fuel cell reactions and up to now scarcely employed in CO<sub>2</sub> electroreduction. In addition, we underscore that normalization of the electrocatalytic activity to the electrochemical active surface area is not the ultimate solution due to concentration gradient along the catalyst layer.This will “underestimate” the activity of high surface electrocatalyst and the degree of underestimation will depend on the thickness, porosity and morphology of the catalyst layer. </p> <p> </p>


Sign in / Sign up

Export Citation Format

Share Document