scholarly journals Factors affecting synthesis of silver-nanoparticles and antimicrobial applications

2020 ◽  
Vol 129 (1D) ◽  
pp. 25-31
Author(s):  
Ton Nu My Phuong ◽  
Nguyen Thi Thanh Hai ◽  
Nguyen Thi Thu Thuy ◽  
Nguyen Vinh Phu ◽  
Nguyen Thi Huong ◽  
...  

Silver nanoparticles were synthesized from silver sulfate by using the chemical reduction method with dextran as both a reducing agent and a protective agent. The influence of reaction temperature, time, and initial pH on the synthesis was investigated. The formation of Ag nano-particles (AgNPs) and their morphology were characterized with UV-Vis spectroscopy, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, and Fourier transform-infrared spectroscopy. The antifungal and antibacterial effects of AgNPs/dextran on Xanthomonas oryzae and Pyricularia oryzae were tested.

2014 ◽  
Vol 2 (4) ◽  
pp. 510-515
Author(s):  
Hala Moustafa Ahmed

The present study mainly focuses of combined action of Nepali hog plum as well as citrate synthesized silver nanoparticles (AgNPs) and Amikacin, as an antibiotic. The synergistic actions of citrate stabilized silver nanoparticles (AgNPs with chem) were compared with that of Nepali hog plum Choerospondia saxillaris (Lapsi) synthesized silver nanoparticles (AgNPs with plant), together with action of antibiotic onselected bacterial strains of Salmonella typhi. The synthesized AgNPs were characterized through UV-Vis spectroscopy, Transmission electronmicroscopy and X-ray diffraction technique. The size of the synthesized silver nanoparticles was measured by Transmission Electron Microscope (TEM) and X-ray diffraction (XRD).DOI: http://dx.doi.org/10.3126/ijasbt.v2i4.11127 Int J Appl Sci Biotechnol, Vol. 2(4): 510-515 


2016 ◽  
Vol 09 (03) ◽  
pp. 1650045 ◽  
Author(s):  
Pei-Ying Li ◽  
Kai-Yu Cheng ◽  
Xiu-Cheng Zheng ◽  
Pu Liu ◽  
Xiu-Juan Xu

Chitosan-ionic liquid conjugation (CILC), which was prepared through the reaction of 1-(4-bromobutyl)-3-methylimidazolium bromide (BBMIB) with chitosan, was firstly used to prepare functionalized graphene composite via the chemical reduction of graphene oxide (GO). The obtained water soluble graphene-based composite was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), ultraviolet-visible (UV–Vis) spectroscopy and so on. CILC-RGO showed excellent dispersion stability in water at the concentration of 2.0 mg/mL, which was stable for several months without any precipitate. This may be ascribed to the electrostatic attraction and [Formula: see text]–[Formula: see text] interaction between CILC and graphene.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
P. Shivakumar Singh ◽  
G. M. Vidyasagar

The present work investigated the biosynthesis of silver nanoparticles using Annona reticulata leaf aqueous extract. The biosynthesised silver nanoparticles were confirmed by visual observation and UV-Vis spectroscopy. Appearance of dark brown colour indicated the synthesis of silver in the reaction mixture. The silver nanoparticles were found to be spherical, rod, and triangular in shape with variable size ranging from 23.84 to 50.54 nm, as evident by X-ray diffraction studies, TEM. The X-ray diffraction studies, energy dispersive X-ray analysis, and TEM analysis indicate that the particles are crystalline in nature. The nanoparticles appeared to be associated with some chemical compounds which possess hydroxyl and carbonyl groups, confirmed by FTIR. This is the first and novel report of silver nanoparticles synthesised from Annona reticulata leaves extract and their antidermatophytic activity.


2013 ◽  
Vol 17 (10) ◽  
pp. 928-933
Author(s):  
Altuğ Mert Sevim ◽  
Ayşe Selda Keskin ◽  
Ahmet Gül

A one step chemical reduction process was used for the preparation of hydrophilic silver nanoparticles ( AgNP ) using silver nitrate, sodiumborohydride and polyvinylpyrolidone as stabilizer. In the case of hydrophobic silver nanoparticles reduced silver ions were stabilized with cetyl trimethylammonium bromide (CTAB). The resultant nano particles were characterized by absoption spectra and their interactions with cationic cobalt (QCoPz) and neutral magnesium (MgPz) porphyrazines in water and in organic medium were investigated by using UV-vis spectroscopy and zeta potential techniques. It is confirmed that both metalloporphyrazine molecules interact with silver nanoparticles in an effective manner. The possible arrangement of the porphyrazines on the surfaces of the hydrophilic and hydrophobic AgNPs has been also discussed according to obtained spectroscopic results. These well-characterized novel AgNP -metalloporphyrazine composites are expected to be useful in optical and catalytic applications.


2011 ◽  
Vol 694 ◽  
pp. 293-297
Author(s):  
Zhi Gang Wu

Pure metallic nickel nanoparticles, spherical shape have been successfully synthesized by the chemical reduction of nickel chloride with hydrazine at room temperature without any protective agent and inert gas protection. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were employed to characterize the nickel nanoparticles and of course, the magnetic properties were also measured. This synthetic method is proven to be simple and very facile. And it’s very interesting that the obtained nickel nanoparticle can be isolated in solid states and stabilized for several months in atmosphere.


2019 ◽  
Vol 22 (6) ◽  
pp. 250-255 ◽  
Author(s):  
Sry Wahyuni ◽  
Syukri Syukri ◽  
Syukri Arief

Studies of green synthesis of nanoparticles mediated by plants extract is extensively explored and studied in recent time due to eco-friendliness, cost-effectiveness, and use a minimum amount of toxic chemicals in the process of inorganic material synthesis. In this study, the immobilization of silver nanoparticles on the surface of titanium dioxide (TiO2) was carried out using Uncaria gambier Roxb. leaf extract as a silver ion (Ag+) reducing agent. The synthesized Ag/TiO2 nanocomposite was characterized by UV-Vis spectroscopy, X-ray diffraction (XRD), and Diffuse Reflectance Spectroscopy (DRS). The formation of silver nanoparticles was confirmed through UV-Vis spectroscopic analysis, which showed a silver surface plasmon resonance (SPR) band at 426 nm. The X-ray diffraction pattern shows that Ag can inhibit the transition of the anatase into rutile phase. The presence of Ag particles in TiO2 can increase the absorption ability from an initial wavelength of 407 nm to 438 nm. Based on the results of Rhodamin B degradation, it can be seen that Ag/TiO2 has a higher photocatalytic activity than bare TiO2 with 99% percent degradation at 120 minutes of irradiation time.


Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1040
Author(s):  
Juan Garcés ◽  
Ramón Arrué ◽  
Néstor Novoa ◽  
Andreia F. Peixoto ◽  
Ricardo J. Chimentão

Copper nanoparticles (NPs) and ZrO2-supported copper NPs (Cu NPs/ZrO2) were synthesized via a chemical reduction method applying different pH (4, 7 and 9) and evaluated in a glycerol dehydration reaction. Copper NPs were characterized with transmission electron microscopy (TEM) and UV–vis spectroscopy. Transmission electron microcopy (TEM) results revealed a homogeneous distribution of copper NPs. A hypsochromic shift was identified with UV–vis spectroscopy as the pH of the synthesis increased from pH = 4 to pH = 9. Zirconia-supported copper NPs catalysts were characterized using N2 physisorption, X-ray diffraction (XRD), TEM, X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR), temperature-programmed desorption of ammonia (NH3-TPD) and N2O chemisorption. The presence of ZrO2 in the chemical reduction method confirmed the dispersion of the copper nanoparticles. X-ray diffraction indicated only the presence of tetragonal zirconia patterns in the catalysts. XPS identified the Cu/Zr surface atomic ratio of the catalysts. TPR patterns showed two main peaks for the Cu NPS/ZrO2 pH = 9 catalyst; the first peak between 125 and 180 °C (region I) was ascribed to more dispersed copper species, and the second one between 180 and 250 °C (region II) was assigned to bulk CuO. The catalysts prepared at pH = 4 and pH = 7 only revealed reduction at lower temperatures (region I). Copper dispersion was determined by N2O chemisorption. With NH3-TPD it was found that Cu NPs/ZrO2 pH = 9 exhibited the highest total quantity of acidic sites and the highest apparent kinetic constant, with a value of 0.004 min−1. The different pH applied to the synthesis media of the copper nanoparticles determined the resultant copper dispersion on the ZrO2 support, providing active domains for glycerol conversion.


2018 ◽  
Vol 83 (5) ◽  
pp. 515-538 ◽  
Author(s):  
Andreia Corciova ◽  
Bianca Ivanescu

Nanotechnology is one of the most studied domains, and nanoparticle synthesis, especially of silver nanoparticles, has gained special importance due to their properties, biocompatibility and applications. Today, the processes of nanoparticles synthesis tend toward the development of inexpensive, simple, non-toxic and environmentally friendly methods. Thus, the use of plants in the synthesis of silver nanoparticles has attracted considerable interest because biomolecules can act as both reducing and stabilizing agents. This survey aims at discussing the conditions for obtaining silver nanoparticles using plants and their characterization by several methods, such as FTIR and UV?Vis spectroscopy, X-ray diffraction, and scanning and transmission electron microscopy. In addition, it examines some of the most common biological uses of silver nanoparticles: antibacterial, antioxidant and cytotoxic.


2019 ◽  
Vol 9 (2) ◽  
pp. 3915-3917
Author(s):  
S. Akhtar ◽  
Z. Farid ◽  
H. Ahmed ◽  
S. A. Khan ◽  
Z. N. Khan

Silver (Ag) nanoparticles (NPs) are synthesized and characterized by a low-cost chemical reduction method. Silver nanoparticles (Ag NPs) have pre-occupied the consideration of the scientific community due to their wide range of functions, utility and industrial applications, particularly in the fields of sensing technologies and medicine (particularly their efficiency against microbes, the ability of healing the wound and anti-inflammatory properties). Ag NPs are synthesized by a low-cost fabrication method. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray diffraction (EDX) and photometry techniques are used in this work to identify their nature and potentiality for diverse applications in sensing technologies.


2016 ◽  
Vol 8 (1) ◽  
pp. 1523-1532 ◽  
Author(s):  
Sujata D Wangkheirakpam ◽  
Wangkheirakpam Radhapiyari Devi ◽  
Chingakham Brajakishore Singh ◽  
Warjeet S Laitonjam

The leaf extract of Strobilanthes flaccidifolius Nees. was used for the synthesis of silver nanoparticles through a green technique of synthesis. The nanoparticles was characterized by UV-VIS spectroscopy which proves the formation silver nanoparticles. FTIR (Fourier Transmission infra red spectroscopy) study was carried out to assess the biomolecule as indigo precursors, Energy dispersion X-ray analysis(EDX) data further proves it. EPR (Electron paramagnetic resonance technique) shows the free radical in silver neutral state and XRD(X-ray diffraction technique) also repots silver neutral formation.The morphology and the shape of the silver nanoparticles were determined by Scanning electron microscopy(SEM) and Tunneling electron microscopy (TEM).The nanoparticles adopted spherical morphology and the size ranging from 6nm to 54.11nm and average size was determined as 12.15± 5.3nm.The nanoparticles had antimicrobial activity


Sign in / Sign up

Export Citation Format

Share Document