scholarly journals FEATURES OF MODELING THE FLOW AROUND THE HELICOPTER MAIN ROTOR TAKING INTO ACCOUNT ARBITRARY BLADES MOTION

2019 ◽  
Vol 22 (3) ◽  
pp. 25-34
Author(s):  
V. A. Vershkov ◽  
B. S. Kritsky ◽  
R. M. Mirgazov

The article considers the problem of the flow around the helicopter main rotor taking into account blades flapping in the plane of rotation and in the plane of thrust as well as the elastic blades deformation. The rotor rotation is modeled by the method of converting Navier-Stokes equations from a fixed coordinate system associated with the incoming flow into a rotating system associated with the rotor hub. For axial flow problems, this makes it possible to formulate the problem as stationary at a constant rotational speed of rotor. For a mode of skewed flow around the rotor in the terms of incident flow in this system it is necessary to solve the non-stationary problem. To solve the problem, the method of deformable grids is used, in which the equations are copied taking into account the grid nodes motion determined in accordance with the spatial blades motion, and SST turbulence model is used for closure. The results of the test calculations of the main rotor aerodynamic characteristics with and without blade flapping are presented in this paper. The coefficients of the main rotor thrust cT and the blades hinge moments mh are compared. The calculations were carried out in the CFD software ANSYS CFX (TsAGI License No. 501024). The flow around a four-bladed main rotor of a radius of 2.5 meters is modeled in the regime of skewed flow. The speed of the incoming flow came to 85 m/s under normal atmospheric conditions. The rotor was at an angle of attack of −10˚. To calculate the rotor motion without taking into account the flapping movements, we used the nonstationary system of Navier-Stokes equations with the closure with SST turbulence model. The calculation was being carried out until the change in the maximum value of the rotor thrust during one revolution became less than 1%. For modeling flapping blade movements, the control laws and equations describing the angle of blade flapping as a function from its azimuth angle obtained from the experiment were used. The procedure for reconstructing the grid according to a given law was conducted using standard grid deformation methods presented in the ANSYS CFX software. When solving the nonstationary Navier-Stokes equations, a dual time step was used. The obtained results show that accounting of the effect of flapping movements and cyclic control of the blades has an impact on the character of changing the main rotor thrust coefficient during one revolution and significantly changes the shape of the graph of the hinge moment coefficient of each blade.

Author(s):  
J.-H. Jeon ◽  
S.-S. Byeon ◽  
Y.-J. Kim

The Francis turbine is a kind of reaction turbines, which means that the potential energy of water converted to rotational kinetic energy. In this study, the flow characteristics have been investigated numerically in a Francis turbine on the 15 MW hydropower generation with various blade profiles (NACA 65 and NACA 16 series) and discharge angles (14°, 15°, 17°, and 18°), using the commercial code, ANSYS CFX. The k-ω SST turbulence model is employed in the Reynolds averaged Navier-Stokes equations. The computing domain includes the spiral casing, guide vanes, and draft tube, which are discretized with a full three-dimensional mesh system of unstructured tetrahedral shapes. The results showed that the change of blade profiles and discharge angles significantly influenced the performance of the Francis turbine.


Author(s):  
Koen Lodefier ◽  
Erik Dick

A transition model for describing wake-induced transition is presented based on the SST turbulence model by Menter and two dynamic equations for intermittency: one for near-wall intermittency and one for free-stream intermittency. In the Navier-Stokes equations, the total intermittency factor, which is the sum of the two, multiplies the turbulent viscosity computed by the turbulence model. The quality of the transition model is illustrated on the T106A test cascade for different levels of inlet free-stream turbulence intensity. The unsteady results are presented in space-time diagrams of shape factor, wall shear stress, momentum thickness and intermittency on the suction side. Results show the capability of the model to capture the physics of unsteady transition. Inevitable shortcomings are also revealed.


Author(s):  
П.А. Поливанов

In this paper a numerical and experimental study of the effect of blowing/suction through a perforated surface on a turbulent boundary layer at a Mach number M = 1.4 is carried out. Most of the calculations were performed by Reynolds-averaged Navier-Stokes equations with the k-w SST turbulence model. The calculated geometry completely repeated the experimental one including the perforated surface. The numerical data were compared with experimental measurements obtained by the PIV method. Analysis of the data made it possible to find the limits of applicability of the numerical method for this flow.


2014 ◽  
Vol 136 (6) ◽  
Author(s):  
B. A. Younis ◽  
A. Abrishamchi

The paper reports on the prediction of the turbulent flow field around a three-dimensional, surface mounted, square-sectioned cylinder at Reynolds numbers in the range 104–105. The effects of turbulence are accounted for in two different ways: by performing large-eddy simulations (LES) with a Smagorinsky model for the subgrid-scale motions and by solving the unsteady form of the Reynolds-averaged Navier–Stokes equations (URANS) together with a turbulence model to determine the resulting Reynolds stresses. The turbulence model used is a two-equation, eddy-viscosity closure that incorporates a term designed to account for the interactions between the organized mean-flow periodicity and the random turbulent motions. Comparisons with experimental data show that the two approaches yield results that are generally comparable and in good accord with the experimental data. The main conclusion of this work is that the URANS approach, which is considerably less demanding in terms of computer resources than LES, can reliably be used for the prediction of unsteady separated flows provided that the effects of organized mean-flow unsteadiness on the turbulence are properly accounted for in the turbulence model.


1989 ◽  
Vol 111 (3) ◽  
pp. 333-340 ◽  
Author(s):  
J. F. Louis ◽  
A. Salhi

The turbulent flow between two rotating co-axial disks is driven by frictional forces. The prediction of the velocity field can be expected to be very sensitive to the turbulence model used to describe the viscosity close to the walls. Numerical solutions of the Navier–Stokes equations, using a k–ε turbulence model derived from Lam and Bremhorst, are presented and compared with experimental results obtained in two different configurations: a rotating cavity and the outflow between a rotating and stationary disk. The comparison shows good overall agreement with the experimental data and substantial improvements over the results of other analyses using the k–ε models. Based on this validation, the model is applied to the flow between counterrotating disks and it gives the dependence of the radial variation of the tangential wall shear stress on Rossby number.


Author(s):  
Hyeonmo Yang ◽  
Sung Kim ◽  
Kyoung-Yong Lee ◽  
Young-Seok Choi ◽  
Jin-Hyuk Kim

One of the best examples of wasted energy is the selection of oversized pumps versus the rated conditions. Oversized pumps are forced to operate at reduced flows, far from their highest efficiency point. An unnecessarily large impeller will produce more flow than required, wasting energy. In the industrial field, trimming the impeller diameter is used more than changing the rotation speed to reduce the head of a pump. In this paper, the impeller trimming method of a mixed-flow pump is defined, and the variation in pump performance by reduction of the impeller diameter was predicted based on computational fluid dynamics. The impeller was trimmed to the same meridional ratio of the hub and shroud, and was compared in five cases. Numerical analysis was performed, including the inlet and outlet pipes in configurations of the mixed-flow pump to be tested. The commercial CFD code, ANSYS CFX-14.5, was used for the numerical analysis, and a three-dimensional Reynolds-averaged Navier-Stokes equations with a shear stress transport turbulence model were used to analyze incompressible turbulence flow. The performance parameters for evaluating the trimmed pump impellers were defined as the total efficiency and total head at the designed flow rate. The numerical and experimental results for the trimmed pump impellers were compared and discussed in this work.


Author(s):  
Fahua Gu ◽  
Mark R. Anderson

The design of turbomachinery has been focusing on the improvement of the machine efficiency and the reduction of the design cost. This paper presents an integrated design system to create the machine geometry and to predict the machine performance at different levels of approximation, including one-dimensional design and analysis, quasi-three-dimensional-(blade-to-blade, throughflow) and full-three-dimensional-steady-state CFD analysis. One of the most important components, the Reynolds-averaged Navier-Stokes solver, is described in detail. It originated from the Dawes solver with numerous enhancements. They include the use of the low speed pre-conditioned full Navier-Stokes equations, the addition of the Spalart-Allmaras turbulence model and an improvement of wall functions related with the turbulence model. The latest upwind scheme, AUSM, has been implemented too. The Dawes code has been rewritten into a multi-block solver for O, C, and H grids. This paper provides some examples to evaluate the effect of grid topology on the machine performance prediction.


Author(s):  
Xingwei Zhang ◽  
Chaoying Zhou

Fundamental research on interaction between flow and structure is presented for computation the fluid dynamics of different two-dimensional oscillating models. The Navier-Stokes equations are solved using finite volume method. A multigrid mesh method which was applied to the situation of flow past the stagnating or vibrating cylinder is developed to simulate this type of flow. The interactive results between flow and structure rigid cylinders have been present. The computation fluid dynamic codes mainly with low Reynolds RANS solver are used to solve the impressible viscous Navier-Stokes equations. Finite volume method which is coupled with conformal hybrid mesh method is developed to simulate this type of flow. Numerical investigation focused on the response and the fluid forces on the cylinders and also observed the different shedding model in the wake. The numerical results are compared in detail with recent experimental and computational work. Present numerical comparison also showed that solution using different turbulence model will make the result have a little discrepancy and each turbulence model has respective characteristics in numerical solution on the vortex-induced vibration of the cylinder. In addition, the formation of the 2P vortex shedding model through the lock-in region and the beginning of the shedding model transformation in numerical calculation from 2S model to 2P model has been analyzed.


2020 ◽  
Vol 9 (1) ◽  
pp. 1402-1419 ◽  
Author(s):  
Nejmeddine Chorfi ◽  
Mohamed Abdelwahed ◽  
Luigi C. Berselli

Abstract In this paper we propose some new non-uniformly-elliptic/damping regularizations of the Navier-Stokes equations, with particular emphasis on the behavior of the vorticity. We consider regularized systems which are inspired by the Baldwin-Lomax and by the selective Smagorinsky model based on vorticity angles, and which can be interpreted as Large Scale methods for turbulent flows. We consider damping terms which are active at the level of the vorticity. We prove the main a priori estimates and compactness results which are needed to show existence of weak and/or strong solutions, both in velocity/pressure and velocity/vorticity formulation for various systems. We start with variants of the known ones, going later on to analyze the new proposed models.


Sign in / Sign up

Export Citation Format

Share Document