scholarly journals DETECTION OF HBLD TOXIN GENE BY BACILLUS CEREUS ISOLATED FROM MEAT CURRY FOOD SAMPLES IN MALAYSIAN RESTAURANTS

2020 ◽  
Vol 4 (2) ◽  
pp. 68-72
Author(s):  
Marwan Msarah ◽  
Ahmed Alsier ◽  
Sahilah, A.M.

Bacillus cereus is a ubiquitous foodborne pathogen, can cause food poisoning, leading to infections, have two major types of food poisoning emetic and diarrheal. Foods rich in protein such as meat are associated with foodborne outbreaks of diarrhea caused by B. cereus. The aim of this study is to isolate and identify B. cereus from ready to eat (RTE) meat curry from restaurants in Malaysia and to detect hblD pathogenic gene of B. cereus isolates. Mannitol egg yolk polymyxin agar was used as a selective isolation medium. Commercially available kits and boiling methods were used for DNA extraction, samples acquired from restaurants were examined for the presence of Hemolysin BL gene by polymerase chain reaction (PCR). Among all isolates, twenty-four of B. cereus isolates detected for HBL enterotoxin production by the discontinuous pattern on HBL sheep blood agar then confirmed by biochemical tests. More than 58.33 % of the isolate showed discontinuous hemolysis pattern on HBl blood agar and 29.16% of the samples were shown positive for hblD gene that can cause diarrhea with the size of 807bp on gel. This study demonstrated that RTE meat curry was a potential source for entero-toxigenic B. cereus and the presence of the hblD toxin genes for the HBL complex in the isolates tested were highly associated. Therefore, these meat curry isolates should be regarded as potential toxin producers.

1971 ◽  
Vol 34 (1) ◽  
pp. 12-15 ◽  
Author(s):  
H. U. Kim ◽  
J. M. Goepfert

One hundred seventy samples of dried food products in national distribution were examined for the incidence and level of contamination by Bacillus cereus. Twenty-five per cent of the samples yielded B. cereus at a level not exceeding 4000 per gram. Mannitol-egg yolk-polymyxin (MYP) agar was used as a presumptive test for the presence of B. cereus in the food samples. Various biochemical tests for the confirmation of suspicious colonies appearing on MYP agar were evaluated. A precipitin test employing spore precipitinogens was investigated as a confirmatory test for B. cereus. The possible role of B. cereus in outbreaks of foodborne disease in the United States is discussed.


Toxins ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 234
Author(s):  
Johanna Burtscher ◽  
Danai Etter ◽  
Michael Biggel ◽  
Janine Schlaepfer ◽  
Sophia Johler

Bacillus cytotoxicus belongs to the Bacillus cereus group that also comprises the foodborne pathogen Bacillus cereus sensu stricto, Bacillus anthracis causing anthrax, as well as the biopesticide Bacillus thuringiensis. The first B. cytotoxicus was isolated in the context of a severe food poisoning outbreak leading to fatal cases of diarrheal disease. Subsequent characterization of the outbreak strain led to the conclusion that this Bacillus strain was highly cytotoxic and eventually resulted in the description of a novel species, whose name reflects the observed toxicity: B. cytotoxicus. However, only a few isolates of this species have been characterized with regard to their cytotoxic potential and the role of B. cytotoxicus as a causative agent of food poisoning remains largely unclear. Hence, the aim of this study was to gain further insights into the toxicity of B. cytotoxicus. To this end, 19 isolates were obtained from mashed potato powders and characterized by toxin gene profiling and Vero cell cytotoxicity assays. All isolates harbored the cytK1 (cytotoxin K1) gene and species-specific variants of the nhe (non-hemolytic enterotoxin) gene. The isolates exhibited low or no toxicity towards Vero cells. Thus, this study indicates that the cytotoxic potential of B. cytotoxicus may be potentially lower than initially assumed.


1980 ◽  
Vol 26 (7) ◽  
pp. 753-759 ◽  
Author(s):  
R. Holbrook ◽  
Judith M. Anderson

The use and performance of an improved diagnostic and selective medium, PEMBA (polymyxin pyruvate egg yolk mannitol bromothymol blue agar), for the detection of Bacillus cereus in foods is described. The distinct colonial appearance of B. cereus on PEMBA permitted the recognition of both strains: those that do precipitate egg yolk and those that do not react with egg yolk. A staining procedure, used to demonstrate microscopically both the presence of lipid globules in vegetative cells and spore morphology of isolates, proved a rapid and reliable confirmatory test which gave complete agreement with a battery of biochemical tests used for this purpose. The quantitative recovery of B. cereus on PEMBA from 143 food samples was not significantly different from counts on KG (Kim and Goepfert), MYP (mannitol egg yolk phenol red), and McClung's media, and the selectivity of PEMBA was generally superior.


2018 ◽  
Vol 7 (2) ◽  
pp. 131-136
Author(s):  
Nasir Ahmad

Background: On May 4th, 2016, at 12:30 district surveillance officer of Magelang Health Department received reports from Public Health Center of Bandongan about 21 students of SDN 1 Trasan who suffered from the same food-poisoning symptoms. Objective: Investigation was carried out to identify the source, how it spread and how to control it. Methods: This study used descriptive analytic and mapping the cases distribution location. The case was people experiencing symptoms of dizziness or abdominal pain or nausea or vomiting. Data analysis was done by using bivariate analysis. Data collection were done through interviews, observations and laboratory tests on the food samples. Results: The case was 50 students (from 1-6 grade students). The perceived symptoms were dizziness (77%), nausea (42%), abdominal pain (40%) and vomiting (8%). Attack rate found ranged from 14.3% to 60% with the highest Attack rate found on class three (60%). The incubation period of 15-240 minutes (mean 72.3 minutes). Calamari like positive Bacillus cereus and Rhodamine-B 10 mg/kg. Conclusion: The outbreak of food poisoning because calamari like contaminated Bacillus cereus. We suggested the school committee to provide the socialization of harmful food for the students. The teachers should restrict the permission for the food vendor to sell at school.   Keywords: Bacillus cereus, , Food Poisoning, Outbreak, Rhodamine B, School Food


Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1899
Author(s):  
Angela Michela Immacolata Montone ◽  
Federico Capuano ◽  
Andrea Mancusi ◽  
Orlandina Di Maro ◽  
Maria Francesca Peruzy ◽  
...  

Bacillus cereus is a spoilage bacterium and is recognized as an agent of food poisoning. Two food-borne illnesses are caused by B. cereus: a diarrheal disease, associated with cytotoxin K, hemolysin BL, non-hemolytic enterotoxin and enterotoxin FM, and an emetic syndrome, associated with the cereulide toxin. Owing to the heat resistance of B. cereus and its ability to grow in milk, this organism should be considered potentially hazardous in dairy products. The present study assessed the risk of B. cereus poisoning due to the consumption of water buffalo mozzarella cheese. A total of 340 samples were analyzed to determine B. cereus counts (ISO 7932:2005); isolates underwent molecular characterization to detect the presence of genes encoding toxins. Eighty-nine (26.1%) samples harbored B. cereus strains, with values ranging from 2.2 × 102 to 2.6 × 106 CFU/g. Isolates showed eight different molecular profiles, and some displayed virulence characteristics. Bacterial counts and the toxin profiles of isolates were evaluated both separately and jointly to assess the risk of enteritis due to B. cereus following the consumption of buffalo mozzarella cheese. In conclusion, the results of the present study showed that the risk of poisoning by B. cereus following the consumption of this cheese was moderate.


Toxins ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 454 ◽  
Author(s):  
Xiao-Ye Liu ◽  
Qiao Hu ◽  
Fei Xu ◽  
Shuang-Yang Ding ◽  
Kui Zhu

Bacillus cereus is a common and ubiquitous foodborne pathogen with an increasing prevalence rate in dairy products in China. High and unmet demands for such products, particularly milk, raise the risk of B. cereus associated contamination. The presence of B. cereus and its virulence factors in dairy products may cause food poisoning and other illnesses. Thus, this review first summarizes the epidemiological characteristics and analytical assays of B. cereus from dairy products in China, providing insights into the implementation of intervention strategies. In addition, the recent achievements on the cytotoxicity and mechanisms of B. cereus are also presented to shed light on the therapeutic options for B. cereus associated infections.


2012 ◽  
Vol 75 (2) ◽  
pp. 225-230 ◽  
Author(s):  
NARI LEE ◽  
JE MIN SUN ◽  
KYUNG YOON KWON ◽  
HYUN JUNG KIM ◽  
MINSEON KOO ◽  
...  

Bacillus cereus can cause emetic and diarrheal types of food poisoning, but little study has been done on the toxins and toxin-encoding genes of B. cereus strains isolated from Sunsik, a Korean ready-to-eat food prepared from grains, fruits, and vegetables. In this study, 39 unique B. cereus strains were isolated and identified from Sunsik samples, with an average contamination level of 10 to 200 CFU/g. The detection rates of the hblACD, cytK, and bceT genes among all the strains were 48.7, 66.7, and 87.1%, respectively. All 39 B. cereus strains carried nheABC and entFM genes, and 36 strains also had the ces gene, which encodes an emetic toxin. Nonhemolytic enterotoxin and hemolysin BL enterotoxin were produced by 39 and 26 strains, respectively. The strains were separated into 13 profiles based on the presence or absence of toxins and their genes, as determined by antibody tests and PCR analysis. Profile 1 was the largest group, comprising 30.7% (12 of 39) of the B. cereus strains tested; these strains harbored all toxins and their genes. The B. cereus strains were susceptible to most of the antibiotics tested but were highly resistant to β-lactam antibiotics. The repetitive element sequence polymorphism PCR fingerprints of the B. cereus strains were not influenced by the presence of toxin genes or antibiotic resistance profiles. Our results suggest that B. cereus strains from Sunsik could cause either the diarrheal or emetic types of food poisoning because all strains isolated contained at least one toxin and its gene, although the level of B. cereus contamination in Sunsik was low.


1985 ◽  
Vol 48 (11) ◽  
pp. 969-970 ◽  
Author(s):  
MATS PETERZ ◽  
CHRISTER WIBERG ◽  
PER NORBERG

Three media for isolation of Bacillus cereus from foods were compared: mannitol-egg yolk-polymyxin (MYP) agar, polymyxin pyruvate-egg yolk-mannitol-bromothymol blue agar (PEMBA) and non-selective blood agar. Twenty-six of 45 samples of different reconstituted and incubated dry food products and 18 of 29 samples of milk and cream (incubated overnight) contained B. cereus. None of the media performed significantly better than the others as regards quantitative recovery or selectivity.


2005 ◽  
Vol 68 (10) ◽  
pp. 2123-2130 ◽  
Author(s):  
I-CHEN YANG ◽  
DANIEL YANG-CHIH SHIH ◽  
TSUI-PING HUANG ◽  
YUN-PU HUANG ◽  
JAN-YI WANG ◽  
...  

Five different enterotoxins and one emetic toxin of Bacillus cereus have been characterized. To amplify all of the enterotoxin and emetic-specific sequences of the species in the B. cereus group, a multiplex PCR with 12 primer pairs was established. In developing the assay method, a common terminal sequence at the 3′ ends of all primers was chosen and a hot start Taq polymerase was used to overcome primer dimer formation. The assay was successfully applied to analyze the toxigenic potential of 162 food-poisoning and food-related strains. Results showed that there were 10 toxigenic patterns for all the test strains. All of the B. cereus strains carried at least one toxin gene. More than 70% of Bacillus mycoides strains carried no known toxin genes. The toxin profiles and toxin genes of B. mycoides strains were significantly different from B. cereus strains (P < 0.05), although the two species were closely related. The results suggest that many B. mycoides strains might be less prone to cause food poisoning. They also indicate the importance of detecting the toxin genes together with the detection of the species in the B. cereus group.


2016 ◽  
Vol 79 (2) ◽  
pp. 230-238 ◽  
Author(s):  
ELISABETH G. BIESTA-PETERS ◽  
SERGE DISSEL ◽  
MARTINE W. REIJ ◽  
MARCEL H. ZWIETERING ◽  
PAUL H. in 't VELD

ABSTRACT The emetic toxin cereulide, which can be produced by Bacillus cereus, can be the cause of food poisoning upon ingestion by the consumer. The toxin causes vomiting and is mainly produced in farinaceous food products. This article includes the prevalence of B. cereus and of cereulide in food products in The Netherlands, a characterization of B. cereus isolates obtained, cereulide production conditions, and a comparison of consumer exposure estimates with those of a previous exposure assessment. Food samples (n = 1,489) were tested for the presence of B. cereus; 5.4% of the samples contained detectable levels (>102 CFU/g), and 0.7% contained levels above 105 CFU/g. Samples (n = 3,008) also were tested for the presence of cereulide. Two samples (0.067%) contained detectable levels of cereulide at 3.2 and 5.4 μg/kg of food product. Of the 481 tested isolates, 81 produced cereulide and/or contained the ces gene. None of the starch-positive and hbl-containing isolates possessed the ces gene, whereas all strains contained the nhe genes. Culture of emetic B. cereus under nonoptimal conditions revealed a delay in onset of cereulide production compared with culture under optimal conditions, and cereulide was produced in all cases when B. cereus cells had been in the stationary phase for some time. The prevalence of cereulide-contaminated food approached the prevalence of contaminated products estimated in an exposure assessment. The main food safety focus associated with this pathogen should be to prevent germination and growth of any B. cereus present in food products and thus prevent cereulide production in foods.


Sign in / Sign up

Export Citation Format

Share Document