scholarly journals Characterization of Bacillus cereus in Dairy Products in China

Toxins ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 454 ◽  
Author(s):  
Xiao-Ye Liu ◽  
Qiao Hu ◽  
Fei Xu ◽  
Shuang-Yang Ding ◽  
Kui Zhu

Bacillus cereus is a common and ubiquitous foodborne pathogen with an increasing prevalence rate in dairy products in China. High and unmet demands for such products, particularly milk, raise the risk of B. cereus associated contamination. The presence of B. cereus and its virulence factors in dairy products may cause food poisoning and other illnesses. Thus, this review first summarizes the epidemiological characteristics and analytical assays of B. cereus from dairy products in China, providing insights into the implementation of intervention strategies. In addition, the recent achievements on the cytotoxicity and mechanisms of B. cereus are also presented to shed light on the therapeutic options for B. cereus associated infections.

2021 ◽  
Vol 50 (6) ◽  
pp. 1663-1672
Author(s):  
Ibrahim Mohamed Aman ◽  
Ibrahim Ibrahim Al-Hawary ◽  
Heba Mustafa Khattab ◽  
Ibrahim Elsayed Eldesoukey

bacillus cereus is an important, opportunistic, foodborne pathogen found in various dairy products. In this study, the prevalence, physiological characteristics, antimicrobial resistance profile, and enterotoxigenic genes (ces and hbla) of b. cereus were investigated in isolates from Egyptian dairy products. A total of 150 samples, including soft white cheese, milk powder, and ultra-high temperature (UHT) milk (50 of each), were collected from local dairy stores in EL-Gharbia governorate, Egypt from April 2019 to October 2019. Of these, 29 samples were contaminated with b. cereus (an overall prevalence of 19.3%). Based on cultural, morphological, and biochemical characteristics, 48 isolates were detected including 27 (56.25%) from soft white cheese, 9 (18.75%) from milk powder, and 12 (25%) from UHT milk. Antibiotic susceptibility assessment showed that all isolates exhibited high sensitivity to amikacin, doxycyclin, gentamycin, ciprofloxacin, while significant resistance to kanamycin, clindamycin, nalidixic acid, cephalothin, and sulphamethoxazole was also observed. All isolates were examined for the presence of emetic (ces) and diarrheal (hbla) genes using the PCR method; ces was detected in 12 (25%) isolates, hbla in 14 (29.2%) isolates, while 22 (45.8%) isolates did not harbor either gene. These findings indicate the need for the application of adequate preventive measures and personnel hygiene in dairy processing lines to minimize b. cereus load in final products.


2021 ◽  
Vol 12 (1) ◽  
pp. 85-93
Author(s):  
Wallapat Phongtang ◽  
Ekachai Chukeatirote

Abstract Bacillus cereus is considered to be an important food poisoning agent causing diarrhea and vomiting. In this study, the occurrence of B. cereus bacteriophages in Thai fermented soybean products (Thua Nao) was studied using five B. cereus sensu lato indicator strains (four B. cereus strains and one B. thuringiensis strain). In a total of 26 Thua Nao samples, there were only two bacteriophages namely BaceFT01 and BaceCM02 exhibiting lytic activity against B. cereus. Morphological analysis revealed that these two bacteriophages belonged to the Myoviridae. Both phages were specific to B. cereus and not able to lyse other tested bacteria including B. licheniformis and B. subtilis. The two phages were able to survive in a pH range between 5 and 12. However, both phages were inactive either by treatment of 50°C for 2 h or exposure of UV for 2 h. It should be noted that both phages were chloroform-insensitive, however. This is the first report describing the presence of bacteriophages in Thua Nao products. The characterization of these two phages is expected to be useful in the food industry for an alternative strategy including the potential use of the phages as a biocontrol candidate against foodborne pathogenic bacteria.


Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1899
Author(s):  
Angela Michela Immacolata Montone ◽  
Federico Capuano ◽  
Andrea Mancusi ◽  
Orlandina Di Maro ◽  
Maria Francesca Peruzy ◽  
...  

Bacillus cereus is a spoilage bacterium and is recognized as an agent of food poisoning. Two food-borne illnesses are caused by B. cereus: a diarrheal disease, associated with cytotoxin K, hemolysin BL, non-hemolytic enterotoxin and enterotoxin FM, and an emetic syndrome, associated with the cereulide toxin. Owing to the heat resistance of B. cereus and its ability to grow in milk, this organism should be considered potentially hazardous in dairy products. The present study assessed the risk of B. cereus poisoning due to the consumption of water buffalo mozzarella cheese. A total of 340 samples were analyzed to determine B. cereus counts (ISO 7932:2005); isolates underwent molecular characterization to detect the presence of genes encoding toxins. Eighty-nine (26.1%) samples harbored B. cereus strains, with values ranging from 2.2 × 102 to 2.6 × 106 CFU/g. Isolates showed eight different molecular profiles, and some displayed virulence characteristics. Bacterial counts and the toxin profiles of isolates were evaluated both separately and jointly to assess the risk of enteritis due to B. cereus following the consumption of buffalo mozzarella cheese. In conclusion, the results of the present study showed that the risk of poisoning by B. cereus following the consumption of this cheese was moderate.


2020 ◽  
Vol 4 (2) ◽  
pp. 68-72
Author(s):  
Marwan Msarah ◽  
Ahmed Alsier ◽  
Sahilah, A.M.

Bacillus cereus is a ubiquitous foodborne pathogen, can cause food poisoning, leading to infections, have two major types of food poisoning emetic and diarrheal. Foods rich in protein such as meat are associated with foodborne outbreaks of diarrhea caused by B. cereus. The aim of this study is to isolate and identify B. cereus from ready to eat (RTE) meat curry from restaurants in Malaysia and to detect hblD pathogenic gene of B. cereus isolates. Mannitol egg yolk polymyxin agar was used as a selective isolation medium. Commercially available kits and boiling methods were used for DNA extraction, samples acquired from restaurants were examined for the presence of Hemolysin BL gene by polymerase chain reaction (PCR). Among all isolates, twenty-four of B. cereus isolates detected for HBL enterotoxin production by the discontinuous pattern on HBL sheep blood agar then confirmed by biochemical tests. More than 58.33 % of the isolate showed discontinuous hemolysis pattern on HBl blood agar and 29.16% of the samples were shown positive for hblD gene that can cause diarrhea with the size of 807bp on gel. This study demonstrated that RTE meat curry was a potential source for entero-toxigenic B. cereus and the presence of the hblD toxin genes for the HBL complex in the isolates tested were highly associated. Therefore, these meat curry isolates should be regarded as potential toxin producers.


2016 ◽  
Vol 79 (2) ◽  
pp. 230-238 ◽  
Author(s):  
ELISABETH G. BIESTA-PETERS ◽  
SERGE DISSEL ◽  
MARTINE W. REIJ ◽  
MARCEL H. ZWIETERING ◽  
PAUL H. in 't VELD

ABSTRACT The emetic toxin cereulide, which can be produced by Bacillus cereus, can be the cause of food poisoning upon ingestion by the consumer. The toxin causes vomiting and is mainly produced in farinaceous food products. This article includes the prevalence of B. cereus and of cereulide in food products in The Netherlands, a characterization of B. cereus isolates obtained, cereulide production conditions, and a comparison of consumer exposure estimates with those of a previous exposure assessment. Food samples (n = 1,489) were tested for the presence of B. cereus; 5.4% of the samples contained detectable levels (>102 CFU/g), and 0.7% contained levels above 105 CFU/g. Samples (n = 3,008) also were tested for the presence of cereulide. Two samples (0.067%) contained detectable levels of cereulide at 3.2 and 5.4 μg/kg of food product. Of the 481 tested isolates, 81 produced cereulide and/or contained the ces gene. None of the starch-positive and hbl-containing isolates possessed the ces gene, whereas all strains contained the nhe genes. Culture of emetic B. cereus under nonoptimal conditions revealed a delay in onset of cereulide production compared with culture under optimal conditions, and cereulide was produced in all cases when B. cereus cells had been in the stationary phase for some time. The prevalence of cereulide-contaminated food approached the prevalence of contaminated products estimated in an exposure assessment. The main food safety focus associated with this pathogen should be to prevent germination and growth of any B. cereus present in food products and thus prevent cereulide production in foods.


2005 ◽  
Vol 71 (12) ◽  
pp. 8214-8220 ◽  
Author(s):  
Richard Dietrich ◽  
Maximilian Moravek ◽  
Christine Bürk ◽  
Per Einar Granum ◽  
Erwin Märtlbauer

ABSTRACT The nonhemolytic enterotoxin (Nhe) is one of the two three-component enterotoxins which are responsible for diarrheal food poisoning syndrome caused by Bacillus cereus. To facilitate the detection of this toxin, consisting of the subunits NheA, NheB, and NheC, a complete set of high-affinity antibodies against each of the three components was established and characterized. A rabbit antiserum specific for the C-terminal part (15 amino acids) of NheC was produced using a respective synthetic peptide coupled to a protein carrier for immunization. Using purified B. cereus exoprotein preparations as immunogens, one monoclonal antibody against NheA and several antibodies against NheB were obtained. No cross-reactivity with other proteins produced by different strains of B. cereus was observed. Antibodies against the NheB component were able to neutralize the cytotoxic activity (up to 98%) of Nhe. Based on indirect enzyme immunoassays, the antibodies developed in this study were successfully used in the characterization of the enterotoxic activity of several B. cereus strains. For the first time, it could be shown that strains carrying the nhe genes usually express the complete set of the three components, including NheC. However, the amount of toxin produced varies considerably between the different strains.


2020 ◽  
Vol 8 (3) ◽  
pp. 76-79
Author(s):  
Mahtab Hamidpour ◽  
Saman Mahdavi

Background: Bacillus cereus is a gram-positive and spore-forming bacterium which is widespread in nature. It also has been known as a major foodborne pathogen that often plays a role in the contamination of ready-to-eat and dairy products. It causes two different types of food poisoning in human: the diarrheal type and the emetic type. Objective: The current study was planned to determine the prevalence of ces and cytk genes of Bacillus cereus isolated from raw milk in Tabriz, Iran. Materials and Methods: In this study, 40 B. cereus strains isolated from cow raw milk, that had already been identified phenotypically, were assessed for molecular confirmation by polymerase chain reaction (PCR) method. Then, they were evaluated for presence of ces and cytK genes by specific primers. Results: Of 40 B. cereus strains, 39 strains were confirmed molecularly. The frequency of cytK and ces genes was reported 38 (97.43%) and 0 (0%), respectively. Conclusion: The results of present study showed that B. cereus strains isolated from raw milk had high potential in causing diarrhea poisoning. Therefore, using procedures to reduce the bacterial contamination during the processing of dairy product is essential.


2021 ◽  
Vol 9 (4) ◽  
Author(s):  
Angelica Bianco ◽  
Loredana Capozzi ◽  
Angela Miccolupo ◽  
Simona Iannetti ◽  
Maria Luisa Danzetta ◽  
...  

Members of Bacillus cereus group are important food contaminants and they are of relevant interest in food safety and public heath due to their ability to cause two distinct forms of food poisoning, emetic and diarrhoeal syndrome. In the present study, 90 strains of B. cereus isolated from dairy products, have been typed using Multilocus Sequence Typing (MLST) analysis and investigated for the occurrence of 10 enterotoxigenic genes (hblA, hblC, hblD, nheA, nheB, nheC, cytK, entFM, entS and bceT) and one emetogenic gene (ces), to determine their genetic diversity. A total of 58 sequence types were identified and among these 17 were signalled as new profiles. Among the virulence genes, the majority of our strains carried the entS (92%), entFM (86%), nhe (82%) and cytK (72%) genes. All remaining genes were identified in at least one strain with different prevalence, stressing the genetic diversity, how even the different grade of pathogenicity of B. cereus isolated from dairy products.


Antibiotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 155 ◽  
Author(s):  
Swift ◽  
Etobayeva ◽  
Reid ◽  
Waters ◽  
Oakley ◽  
...  

Bacillus cereus, a Gram-positive bacterium, is an agent of food poisoning. B. cereus is closely related to Bacillus anthracis, a deadly pathogen for humans, and Bacillus thuringenesis, an insect pathogen. Due to the growing prevalence of antibiotic resistance in bacteria, alternative antimicrobials are needed. One such alternative is peptidoglycan hydrolase enzymes, which can lyse Gram-positive bacteria when exposed externally. A bioinformatic search for bacteriolytic enzymes led to the discovery of a gene encoding an endolysin-like endopeptidase, LysBC17, which was then cloned from the genome of B. cereus strain Bc17. This gene is also present in the B. cereus ATCC 14579 genome. The gene for LysBC17 encodes a protein of 281 amino acids. Recombinant LysBC17 was expressed and purified from E. coli. Optimal lytic activity against B. cereus occurred between pH 7.0 and 8.0, and in the absence of NaCl. The LysBC17 enzyme had lytic activity against strains of B. cereus, B. anthracis, and other Bacillus species.


Sign in / Sign up

Export Citation Format

Share Document