Characterization and Exposure Assessment of Emetic Bacillus cereus and Cereulide Production in Food Products on the Dutch Market

2016 ◽  
Vol 79 (2) ◽  
pp. 230-238 ◽  
Author(s):  
ELISABETH G. BIESTA-PETERS ◽  
SERGE DISSEL ◽  
MARTINE W. REIJ ◽  
MARCEL H. ZWIETERING ◽  
PAUL H. in 't VELD

ABSTRACT The emetic toxin cereulide, which can be produced by Bacillus cereus, can be the cause of food poisoning upon ingestion by the consumer. The toxin causes vomiting and is mainly produced in farinaceous food products. This article includes the prevalence of B. cereus and of cereulide in food products in The Netherlands, a characterization of B. cereus isolates obtained, cereulide production conditions, and a comparison of consumer exposure estimates with those of a previous exposure assessment. Food samples (n = 1,489) were tested for the presence of B. cereus; 5.4% of the samples contained detectable levels (>102 CFU/g), and 0.7% contained levels above 105 CFU/g. Samples (n = 3,008) also were tested for the presence of cereulide. Two samples (0.067%) contained detectable levels of cereulide at 3.2 and 5.4 μg/kg of food product. Of the 481 tested isolates, 81 produced cereulide and/or contained the ces gene. None of the starch-positive and hbl-containing isolates possessed the ces gene, whereas all strains contained the nhe genes. Culture of emetic B. cereus under nonoptimal conditions revealed a delay in onset of cereulide production compared with culture under optimal conditions, and cereulide was produced in all cases when B. cereus cells had been in the stationary phase for some time. The prevalence of cereulide-contaminated food approached the prevalence of contaminated products estimated in an exposure assessment. The main food safety focus associated with this pathogen should be to prevent germination and growth of any B. cereus present in food products and thus prevent cereulide production in foods.

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1360
Author(s):  
Veronika Walser ◽  
Markus Kranzler ◽  
Monika Ehling-Schulz ◽  
Timo D. Stark ◽  
Thomas F. Hofmann

The emetic Bacillus cereus toxin cereulide presents an enormous safety hazard in the food industry, inducing emesis and nausea after the consumption of contaminated foods. Additional to cereulide itself, seven structurally related isoforms, namely the isocereulides A–G, have already been elucidated in their chemical structure and could further be identified in B. cereus contaminated food samples. The newly performed isolation of isocereulide A allowed, for the first time, 1D- and 2D-NMR spectroscopy of a biosynthetically produced isocereulide, revealing results that contradict previous assumptions of an l-O-Leu moiety within its chemical structure. By furthermore applying posthydrolytical dipeptide analysis, amino acid and α-hydroxy acid analysis by means of UPLC-ESI-TOF-MS, as well as MSn sequencing, the structure of previously reported isocereulide A could be corrected. Instead of the l-O-Leu as assumed to date, one l-O-Ile unit could be verified in the cyclic dodecadepsipeptide, revising the structure of isocereulide A to [(d-O-Leu-d-Ala-l-O-Val-l-Val)2(d-O-Leu-d-Ala-l-O-Ile-l-Val)].


2018 ◽  
Vol 7 (2) ◽  
pp. 131-136
Author(s):  
Nasir Ahmad

Background: On May 4th, 2016, at 12:30 district surveillance officer of Magelang Health Department received reports from Public Health Center of Bandongan about 21 students of SDN 1 Trasan who suffered from the same food-poisoning symptoms. Objective: Investigation was carried out to identify the source, how it spread and how to control it. Methods: This study used descriptive analytic and mapping the cases distribution location. The case was people experiencing symptoms of dizziness or abdominal pain or nausea or vomiting. Data analysis was done by using bivariate analysis. Data collection were done through interviews, observations and laboratory tests on the food samples. Results: The case was 50 students (from 1-6 grade students). The perceived symptoms were dizziness (77%), nausea (42%), abdominal pain (40%) and vomiting (8%). Attack rate found ranged from 14.3% to 60% with the highest Attack rate found on class three (60%). The incubation period of 15-240 minutes (mean 72.3 minutes). Calamari like positive Bacillus cereus and Rhodamine-B 10 mg/kg. Conclusion: The outbreak of food poisoning because calamari like contaminated Bacillus cereus. We suggested the school committee to provide the socialization of harmful food for the students. The teachers should restrict the permission for the food vendor to sell at school.   Keywords: Bacillus cereus, , Food Poisoning, Outbreak, Rhodamine B, School Food


2021 ◽  
Vol 12 (1) ◽  
pp. 85-93
Author(s):  
Wallapat Phongtang ◽  
Ekachai Chukeatirote

Abstract Bacillus cereus is considered to be an important food poisoning agent causing diarrhea and vomiting. In this study, the occurrence of B. cereus bacteriophages in Thai fermented soybean products (Thua Nao) was studied using five B. cereus sensu lato indicator strains (four B. cereus strains and one B. thuringiensis strain). In a total of 26 Thua Nao samples, there were only two bacteriophages namely BaceFT01 and BaceCM02 exhibiting lytic activity against B. cereus. Morphological analysis revealed that these two bacteriophages belonged to the Myoviridae. Both phages were specific to B. cereus and not able to lyse other tested bacteria including B. licheniformis and B. subtilis. The two phages were able to survive in a pH range between 5 and 12. However, both phages were inactive either by treatment of 50°C for 2 h or exposure of UV for 2 h. It should be noted that both phages were chloroform-insensitive, however. This is the first report describing the presence of bacteriophages in Thua Nao products. The characterization of these two phages is expected to be useful in the food industry for an alternative strategy including the potential use of the phages as a biocontrol candidate against foodborne pathogenic bacteria.


Toxins ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 454 ◽  
Author(s):  
Xiao-Ye Liu ◽  
Qiao Hu ◽  
Fei Xu ◽  
Shuang-Yang Ding ◽  
Kui Zhu

Bacillus cereus is a common and ubiquitous foodborne pathogen with an increasing prevalence rate in dairy products in China. High and unmet demands for such products, particularly milk, raise the risk of B. cereus associated contamination. The presence of B. cereus and its virulence factors in dairy products may cause food poisoning and other illnesses. Thus, this review first summarizes the epidemiological characteristics and analytical assays of B. cereus from dairy products in China, providing insights into the implementation of intervention strategies. In addition, the recent achievements on the cytotoxicity and mechanisms of B. cereus are also presented to shed light on the therapeutic options for B. cereus associated infections.


2020 ◽  
Vol 4 (2) ◽  
pp. 68-72
Author(s):  
Marwan Msarah ◽  
Ahmed Alsier ◽  
Sahilah, A.M.

Bacillus cereus is a ubiquitous foodborne pathogen, can cause food poisoning, leading to infections, have two major types of food poisoning emetic and diarrheal. Foods rich in protein such as meat are associated with foodborne outbreaks of diarrhea caused by B. cereus. The aim of this study is to isolate and identify B. cereus from ready to eat (RTE) meat curry from restaurants in Malaysia and to detect hblD pathogenic gene of B. cereus isolates. Mannitol egg yolk polymyxin agar was used as a selective isolation medium. Commercially available kits and boiling methods were used for DNA extraction, samples acquired from restaurants were examined for the presence of Hemolysin BL gene by polymerase chain reaction (PCR). Among all isolates, twenty-four of B. cereus isolates detected for HBL enterotoxin production by the discontinuous pattern on HBL sheep blood agar then confirmed by biochemical tests. More than 58.33 % of the isolate showed discontinuous hemolysis pattern on HBl blood agar and 29.16% of the samples were shown positive for hblD gene that can cause diarrhea with the size of 807bp on gel. This study demonstrated that RTE meat curry was a potential source for entero-toxigenic B. cereus and the presence of the hblD toxin genes for the HBL complex in the isolates tested were highly associated. Therefore, these meat curry isolates should be regarded as potential toxin producers.


2005 ◽  
Vol 71 (12) ◽  
pp. 8214-8220 ◽  
Author(s):  
Richard Dietrich ◽  
Maximilian Moravek ◽  
Christine Bürk ◽  
Per Einar Granum ◽  
Erwin Märtlbauer

ABSTRACT The nonhemolytic enterotoxin (Nhe) is one of the two three-component enterotoxins which are responsible for diarrheal food poisoning syndrome caused by Bacillus cereus. To facilitate the detection of this toxin, consisting of the subunits NheA, NheB, and NheC, a complete set of high-affinity antibodies against each of the three components was established and characterized. A rabbit antiserum specific for the C-terminal part (15 amino acids) of NheC was produced using a respective synthetic peptide coupled to a protein carrier for immunization. Using purified B. cereus exoprotein preparations as immunogens, one monoclonal antibody against NheA and several antibodies against NheB were obtained. No cross-reactivity with other proteins produced by different strains of B. cereus was observed. Antibodies against the NheB component were able to neutralize the cytotoxic activity (up to 98%) of Nhe. Based on indirect enzyme immunoassays, the antibodies developed in this study were successfully used in the characterization of the enterotoxic activity of several B. cereus strains. For the first time, it could be shown that strains carrying the nhe genes usually express the complete set of the three components, including NheC. However, the amount of toxin produced varies considerably between the different strains.


2017 ◽  
Vol 61 (6) ◽  
Author(s):  
Xiaobo Liu ◽  
Ruichao Li ◽  
Zhiwei Zheng ◽  
Kaichao Chen ◽  
Miaomiao Xie ◽  
...  

ABSTRACT This study surveyed the prevalence of mcr-1 in extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli strains of food origin in China and identified strains that carried mcr-1, fosA3, and ESBL genes, which were carried in various plasmids. The mcr-1 and ESBL genes could be cotransferred by one or more types of plasmids. The presence of these multidrug-resistant E. coli strains in food products might pose a huge threat to public health.


2019 ◽  
Vol 7 (2) ◽  
pp. 131-136
Author(s):  
Nasir Ahmad ◽  
Adi Isworo ◽  
Citra Indriani

Background: On May 4th, 2016, at 12:30 district surveillance officer of Magelang Health Department received reports from Public Health Center of Bandongan about 21 students of SDN 1 Trasan who suffered from the same food-poisoning symptoms. Objective: Investigation was carried out to identify the source, how it spread and how to control it. Methods: This study used descriptive analytic and mapping the cases distribution location. The case was people experiencing symptoms of dizziness or abdominal pain or nausea or vomiting. Data analysis was done by using bivariate analysis. Data collection were done through interviews, observations and laboratory tests on the food samples. Results: The case was 50 students (from 1-6 grade students). The perceived symptoms were dizziness (77%), nausea (42%), abdominal pain (40%) and vomiting (8%). Attack rate found ranged from 14.3% to 60% with the highest Attack rate found on class three (60%). The incubation period of 15-240 minutes (mean 72.3 minutes). Calamari like positive Bacillus cereus and Rhodamine-B 10 mg/kg. Conclusion: The outbreak of food poisoning because calamari like contaminated Bacillus cereus. We suggested the school committee to provide the socialization of harmful food for the students. The teachers should restrict the permission for the food vendor to sell at school. Keywords: Bacillus cereus, , Food Poisoning, Outbreak, Rhodamine B, School Food


2022 ◽  
pp. 26-40
Author(s):  
Noor Azira Abdul Mutalib ◽  
Noor Aniza Abdul Rahim ◽  
Ungku Fatimah Ungku Zainal Abidin

Food poisoning cases in Malaysia showed an increasing trend every year where 496 episodes were reported in 2018 as compared to 401 episodes in the same week of the year 2017. Bacillus cereus is one of the foodborne pathogens related to food poisoning cases in Malaysia. The main cause for the outbreak of B. cereus is the unregulated temperature during holding time. This study was conducted to detect the presence of aerobic bacteria and B. cereus present in ready-to-eat food in Northern Perak. A total of 83 food samples were collected and analyzed for the microbial count. The result shows that aerobic bacteria and B. cereus were detected in 28% of the samples. B. cereus count in food samples tested ranged from 100 cfu/g to 42000 cfu/g, whereas the aerobic bacteria recorded a range of 500 cfu/g to 2100000 cfu/g. The highest percentage of B. cereus was found in rice-based food, followed by meat, poultry, and gravy dishes. Positive colonies of B. cereus were further tested for anti-microbial resistance profile. Most B. cereus isolates showed resistance to tetracycline and clindamycin.


Antibiotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 155 ◽  
Author(s):  
Swift ◽  
Etobayeva ◽  
Reid ◽  
Waters ◽  
Oakley ◽  
...  

Bacillus cereus, a Gram-positive bacterium, is an agent of food poisoning. B. cereus is closely related to Bacillus anthracis, a deadly pathogen for humans, and Bacillus thuringenesis, an insect pathogen. Due to the growing prevalence of antibiotic resistance in bacteria, alternative antimicrobials are needed. One such alternative is peptidoglycan hydrolase enzymes, which can lyse Gram-positive bacteria when exposed externally. A bioinformatic search for bacteriolytic enzymes led to the discovery of a gene encoding an endolysin-like endopeptidase, LysBC17, which was then cloned from the genome of B. cereus strain Bc17. This gene is also present in the B. cereus ATCC 14579 genome. The gene for LysBC17 encodes a protein of 281 amino acids. Recombinant LysBC17 was expressed and purified from E. coli. Optimal lytic activity against B. cereus occurred between pH 7.0 and 8.0, and in the absence of NaCl. The LysBC17 enzyme had lytic activity against strains of B. cereus, B. anthracis, and other Bacillus species.


Sign in / Sign up

Export Citation Format

Share Document