scholarly journals POLLUTION BLOOM: AN APPRAISAL OF THE HAZARDOUS EFFECTS OF MINING OF PRECIOUS STONES IN ZAMFARA STATE

2020 ◽  
Vol 4 (1) ◽  
pp. 35-41
Author(s):  
Doris Fovwe Ogeleka ◽  
Godswill Igoni Alaminiokuma

In this appraisal, heavy metal concentrations in soils from Zamfara State were enumerated approximately a decade after the lead poisoning saga using indexes of pollution. The area is enhancement with valuable ores and minerals including gold making mining the most lucrative business in the area. The soils were moderate to slightly basic with a pH range from 6.49 ± 0.12 to 7.96 ± 0.15 (water) and 6.15 ± 0.10 to 7.80 ± 0.17 (KCl). Contamination / pollution (C/P) values reported for cadmium, lead, zinc and copper was 42.66, 0.59, 0.85 and 3.04 in the respective order (severe contamination to excessive pollution). The contamination factor (CF) was greater than the highest factor of 6, indicating very high contamination. The calculated values for geochemical accumulation (Igeo) and ecological risk factor (ERf) for Cd, Pb, Zn and Cu was (19.26, 0.27, 0.38, 1.37) and (1280, 2.95, 0.85, 15.2) respectively while the potential ecological risk index (ERi) was 1299, indicating that the soils were perturbed (polluted). Considering the deleterious effects heavy metals could cause and the resultant health implications, there is need to further remediate the polluted areas so as to avert harm to organisms and humans would consume crops grown in such environment.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Barbara K. Klik ◽  
Zygmunt M. Gusiatin ◽  
Dorota Kulikowska

AbstractRemediation of soils contaminated with metal must ensure high efficiency of metals removal, reduce bioavailability of residual metals and decrease ecological risk. Thus, for comprehensive environmental soil quality assessment, different indices must be used. In this study, suitability of 8 indices was used for soil highly contaminated with Cu (7874.5 mg kg−1), moderately with Pb (1414.3 mg kg−1) and low with Zn (566.1 mg kg−1), washed in batch and dynamic conditions with both conventional and next-generation washing agents. The following indices were used: modified contamination factor (mCf), modified contamination factor degree (mCdeg), mobility factor (MF), reduced partition index (IR), potential ecological risk factor (Er,Z), modified potential ecological risk factor (Er,m), potential ecological risk index (RIZ) and modified ecological risk index (RIm). For mCf,mCdeg and IR own classification scale was proposed. It was proven that most useful indices for assessment of soil pollution with metals were mCf and mCdeg. The mCf together with the IR allow to simultaneous assessment of soil pollution and stability for individual metals. These indices were appropriate for soil contaminated with different concentrations of metals, washed under both hydrodynamic conditions using various washing agents and different effectiveness of metals removal. Thus, they may be considered as most useful for evaluation of remediation method, feasibility of washing agent and assessing soil quality after washing.


Proceedings ◽  
2019 ◽  
Vol 44 (1) ◽  
pp. 1 ◽  
Author(s):  
Agnieszka Gruszecka-Kosowska

The aim of these investigations was to determine the impact of heavy metals bound with deposited particulate matter (PM) on contamination degree and related toxicological effects by calculating enrichment indices, namely, the geo-accumulation index (Igeo), contamination factor (CF), and enrichment factor (EF), as well as the ecological risk index (ERI) and modified hazard quotient (mHQ). Calculations were made based on the selected element concentrations determined in deposited PM samples in Krakow. The results of the investigations revealed that deposited PM was enriched in heavy metals. As Igeo provides information on the level of metal accumulation, it was found that deposited PM was practically uncontaminated with Be, Cd, and Tl (class 0) but heavily to extremely contaminated (class 5) with Co and Sn and extremely contaminated (class 6) with As, Ba, Cr, Cu, Li, Mn, Ni, Pb, Sr, Ti, V, and Zn. On the other hand, the calculated values of CF revealed very high contamination of deposited PM with Cd and Zn, considerable contamination with Sn, Pb, and As, and moderate contamination with Cu and Li. Values of calculated EF revealed that among the investigated elements, only Zn originated from anthropogenic sources. For Cd, a small influence of anthropogenic sources was observed. For Pb and Sn, non-crustal sources of emission were expected. The calculated ERI values indicated potential ecological risk levels that were very high for Cd and considerable for Zn, as well as low potential ecological risk for As, Co, Cr, Cu, Ni, Pb, and Tl. Moreover, the calculated mHQ values of severity of contamination were extreme for Zn, considerable for Cr, and moderate for As, Cu, and Pb. The analysis revealed that the impact of atmospheric and re-suspended PM on inhabitants constitutes a complex effect of a mixture of heavy metals simultaneously affecting human health.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Ahmed A. Elnazer ◽  
Salman A. Salman ◽  
Elmontser M. Seleem ◽  
Elsayed M. Abu El Ella

To assess the roadside soils contamination with Pb, Cd, and Zn, 34 soil samples were collected along Alexandria-Marsa Matruh highway, Egypt, and analyzed by using the atomic absorption. The contamination with these metals was evaluated by applying index of geoaccumulation(Igeo), contamination factor (CF), pollution load index (PLI), the single ecological risk index(Ei), and the potential ecological risk index (PERI). The average concentrations of Pb, Cd, and Zn were 38.2, 2.3, and 43.4 μg/g, respectively.Igeoindicates the pollution of soil with Pb and Cd as opposed to Zn.Eishows that the roadside soils had low risk from Pb and Zn and had considerable to high risk from Cd. Most of the samples (62%) present low PERI risk associated with metal exposure and the rest of the samples (38%) are of moderate PERI. The bioavailable fraction (EDTA-Extract) was 72.5 and 37.5% for Pb and Cd contents, respectively. These results indicate the remarkable effect of vehicular and agricultural activities on Pb and Cd contents in soil.


2021 ◽  
Author(s):  
Xin Ke ◽  
Xun Sun ◽  
Zheng Yan

Abstract Distributions and compositions of six phthalic acid esters (PAEs), eight phenol compounds and seven heavy metals in riverbed sediments of the Xihe River in Shenyang, China. The ecological risks of these typical pollutants were investigated and evaluated based on the risk quotient (RQ) and potential ecological risk index (PERI) methods. The concentrations of total ∑6PAEs, ∑8phenols and ∑7heavy metals in sediments varied from 92.83 to 293.66 μg/g dw, 8.87 to 83.73 μg/g dw and 0.46 to 419μg/g dw. The main pollutants in Xihe River sediments are DEHP, DIBP, phenol, P-methylphenol and Cd. More than half target PAEs and phenol compounds in sediment of the Xihe River exhibited medium or high ecological risk. Cd poses a very high ecological risk to the Xihe River Basin. It is imperative to take some effective measures to reduce the pollution of those contaminants.


2014 ◽  
Vol 675-677 ◽  
pp. 345-349
Author(s):  
Ji Cai Qiu

In order to analysis the Heavy metals in the bottom mud at beng river, we put the river reach between the bridge of beng river beside the er’huang road and the bridge beside the yin’meng road as the main research object, survey 14 transects of bottom mud from three indications (Hg,Pb,Cr) of the river and build a relate standards about the pollution of bottom mud depend on the domestic standards, in this paper, we use the potential ecological risk index method which was putted forward by Swedish scientists Hakanson as the criterion of the pollution about heavy metals in the mud. The results show that: at the rive reach mentioned above, we found there are very high heavy metals content in the bottom mud.


2017 ◽  
Vol 43 (1) ◽  
pp. 34-47 ◽  
Author(s):  
Cem Tokatli

Abstract Gala Lake National Park that has an international importance is one of the most important wetland ecosystems for Turkey. As same as many aquatic habitats, Gala Lake is under a significant anthropogenic pressure originated from agricultural activities conducted around the lake and from industrial discharges by means of Ergene River. The aim of this study was to evaluate the sediment quality of Gala Lake and Irrigation Canal by investigating some toxic element accumulations (As, B, Ni, Cr, Pb, Cd, Zn and Cu) from a statistical perspective. Pearson Correlation Index (PCI) and Factor Analysis (FA) were applied to detected data in order to determine the associated contaminants and effective factors on the system. Potential Ecological Risk Index (RI) and Biological Risk Index based sediment quality guidelines (mERM-Q) applied to detected data in order to assess the ecological and biological risks of heavy metals in the ecosystem. Also Geographic Information System (GIS) technology was used to make visual explanations by presenting distribution maps of investigated elements. According to the results of PCI, significant positive correlations were recorded among the investigated toxic elements at 0.01 significance level. According to the results of FA, two factors, which were named as “Agricultural Factor” and “Industrial Factor”, explained 86.6% of the total variance. According to the results of Potential Ecological Risk Index, cadmium was found to be the highest risk factor and according to results of Biological Risk Index, nickel and chromium were found to be the highest risk factors for Gala Lake and Irrigation Canal. As a result of the present study, it was also determined that heavy metal contents in sediments of Gala Lake National Park reached to critical levels and the system is intensively under effect of agricultural and industrial originated pollution.


2014 ◽  
Vol 955-959 ◽  
pp. 2280-2284
Author(s):  
Kai Yue Gong ◽  
Pei Shi Qi ◽  
Yun Zhi Liu

In this study, the distribution and enrichment characters of heavy metals were explored. And the potential ecological risk levels of heavy metals were evaluated by geo-accumulation index method and potential ecological risk index method. The concentrations of heavy metals in sediments of Harbin section of Songhua River are: Zn>Pb>Cr>Cu>Ni>Cd. The enrichment degree of Zn is the highest, while Cd is the lowest. The potential ecological risk indexes of heavy metals in the sediments of section of Songhua River in Harbin are: Cd>Pb>Cu>Zn>Ni>Cr. The main heavy metals pollution is Cd, which has low content but considerable potential ecological risk and contributes most to RI. The ecological risk level of heavy metals in the sediments of the section of Songhua River in Harbin is moderate.


Processes ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 29
Author(s):  
Saijun Zhou ◽  
Renjian Deng ◽  
Andrew Hursthouse

We evaluated the direct release to the environment of a number of potentially toxic elements (PTEs) from various processing nodes at Xikuangshan Antimony Mine in Hunan Province, China. Sampling wastewater, processing dust, and solid waste and characterizing PTE content (major elements Sb, As, Zn, and associated Hg, Pb, and Cd) from processing activities, we extrapolated findings to assess wider environmental significance using the pollution index and the potential ecological risk index. The Sb, As, and Zn in wastewater from the antimony benefication industry and a wider group of PTEs in the fine ore bin were significantly higher than their reference values. The content of Sb, As, and Zn in tailings were relatively high, with the average value being 2674, 1040, and 590 mg·kg−1, respectively. The content of PTEs in the surface soils surrounding the tailings was similar to that in tailings, and much higher than the background values. The results of the pollution index evaluation of the degree of pollution by PTEs showed that while dominated by Sb, some variation in order of significance was seen namely for: (1) The ore processing wastewater Sb > Pb > As > Zn > Hg > Cd, (2) in dust Sb > As > Cd > Pb > Hg > Zn, and (3) surface soil (near tailings) Sb > Hg > Cd > As > Zn > Pb. From the assessment of the potential ecological risk index, the levels were most significant at the three dust generation nodes and in the soil surrounding the tailings reservoir.


2020 ◽  
Author(s):  
K. Y. Lim ◽  
N. A. Zakaria ◽  
K. Y. Foo

Abstract The present work is aimed at assessing the aftermath effects of the 2014 flood tragedy on the distribution, pollution status and ecological risks of the heavy metals deposited in the surface river sediment. A series of environmental pollution indexes, specifically the enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (CF), modified degree of contamination (mCd), pollution load index (PLI), potential ecological risk index (PERI) and sediment quality guidelines (SQGs) have been adopted. Results revealed that the freshly deposited sediments collected soon after the flood event were dominated by Cu, Fe, Pb, Ni, Zn, Cr and Cd, with the average concentrations of 38.74, 16,892, 17.71, 4.65, 29.22, 42.36 and 0.29 mg/kg, respectively. According to the heavy metal pollution indexes, Pahang River sediments were moderately to severely contaminated with Pb, Ni, Cu, Zn and Cr, while Cd with the highest risk of 91.09 was the predominant element that illustrated an aesthetic ecological risk to the water body after the tragic flood event. The findings highlighted a critical deterioration of the heavy metals content, driven by the catastrophic flood event, which has drastically altered their geochemical cycles, sedimentary pollution status and biochemical balance of the river's environment.


Sign in / Sign up

Export Citation Format

Share Document