scholarly journals Chlorophyll Fluorescence in Assessing the Effect of Heavy Metal Compounds on Aquatic Organisms

Author(s):  
G. A. Sorokina ◽  
◽  
T. L. Shashkova ◽  
M. A. Subbotin ◽  
E. S. Stravinskene ◽  
...  

Fluorescent methods allow to improve the bioassays because of time effectiveness. These methods give information on chlorophyll concentration and plant photosynthetic apparatus activity in a short period of time. The aim of this study was to estimate the sensitivity of aquatic organisms to heavy metals using chlorophyll fluorescent methods. The test-organisms of different taxonomic categories were used, including thermophilic strain Chlorella vulgaris Beijer, aquatic plants Elodea сanadensis Michx. and Lemna minor L., crustacean Daphnia magna Straus. Fluorimeter “Foton 10” developed in SibFU was employed to measure prompt and delayed fluorescence (PF and DF respectively). The experiments revealed that copper ions affected DF of chlorella in 30 minutes, resulting in a 50% decrease of relative indicator of DF (RIDF) in the range of concentrations 0.005-0.01 mg/l of Cu2+. Measuring the DF of duckweed was less time-consuming compared to registration the changing of morphological parameters when the plants were exposed to heavy metals. Copper, cadmium, and nickel exposures were found to decrease the RIDF of duckweed by more than 50% at the concentrations of 0.17, 0.31, and 1.89 mg/l respectively. However, zinc had no significant effect on the RIDF of Lemna minor in the range of 0.1-8 mg/l of Zn2+ within 24 h of exposure time. The analysis of fluorescent parameters of Canadian elodea showed the possibility of using the plant as a sorbent during the bioremediation of aquatic environments from heavy metals. Registration of chlorophyll fluorescence allowed revealing the toxic effects of negligible concentrations of heavy metals in experiments with the feeding rate of daphnids. The median effective concentrations (EC50) were 0.002, 0.02, 0.4, and 0.25 mg/l of Cd2+, Cu2+, Zn2+, and potassium dichromate respectively. This makes it possible to obtain information on the effects of pollution in the early stages of exposure and in a shorter time. Thus, the use of chlorophyll fluorescence in biomonitoring the state of the aquatic environment makes it possible to more quickly respond to changes in the ecological situation in water bodies.

2012 ◽  
Author(s):  
Filippo Bussotti ◽  
Mohamed Hazem Kalaji ◽  
Rosanna Desotgiu ◽  
Martina Pollastrini ◽  
Tadeusz Loboda ◽  
...  

The book begins with a detailed description of the characteristics of the photosynthetic apparatus and the processes that take place there, to then present the general principles of fluorescence. After that, it gives a description of the characteristics of direct and modulated fluorescence and a presentation of the shared and distinctive parameters of these two techniques. Then a brief presentation is made of other innovative approaches to the analysis of fluorescence (Chlorophyll Fluorescence Imaging - CFI, P700 absorbance, delayed fluorescence) and the relative tools. An important part of the book comprises a description of the possible applications of fluorescence techniques for the analysis of various types of stress (aridity, strong light radiations, UV, high and low temperatures, salinity, weedkillers, pollution, etc.) and, consequently, their possible use in agriculture, forestry and to protect the environment.


1982 ◽  
Vol 14 (12) ◽  
pp. 107-125 ◽  
Author(s):  
Roland Wollast

A comparison of the concentration of dissolved and of particulate heavy metals in the aquatic system indicates that these elements are strongly enriched in the suspended matter. The transfer between the aqueous phase and the solid phase may be due to dissolution-precipitation reactions, adsorption-desorption processes or biological processes. When these processes are identified, it is further possible to develop mathematical models which describe the behaviour of these elements. The enrichment of heavy metals in the particulate phase suspended or deposited and in aquatic organisms constitutes a powerful tool in order to evaluate sources of pollution.


2021 ◽  
Vol 5 (1) ◽  
pp. 223-232
Author(s):  
Mohammed Jr. Kinta ◽  
A. V. Ayanwale ◽  
U. N. Keke ◽  
Y. I. Auta ◽  
B. S. Adama ◽  
...  

Developing countries like Nigeria are faced with increased in generation of domestic, industrial and agricultural wastes, with a large percentage moving. This study evaluates the physico-chemical and some heavy metals concentration in three common species of fish from Tungan Kawo reservoir Kontagora, Nigeria; using standard methods between (July 2018 – February 2019); at four different sampling stations of human activities on the water. Five heavy metals were evaluated (Lead, Copper, Manganese, Iron and Chromium) in the fish samples. Phosphate (0.4 – 2.5) mg/L, Nitrate (3.2 – 7.5) mg/L, Temperature (27 – 32.4) 0C, Dissolved Oxygen (2.4 – 5.2 mg/L), Conductivity (81 – 125 µS/cm), Biochemical Oxygen Demand (1.9 – 4.4 mg/L), Alkalinity (mg/L) and Total Dissolved Solids (117 – 198) ppm were within the standard for drinking water and survival of fish.  However, the pH (6.3 – 9.8) was above the standard for NIS and WHO drinking water but can support aquatic life. Iron (0.64 ± 0.072 mg/kg) was the most highly concentrated in Synodontis clarias while lead (0.01 ± 0.013 mg/kg) was the lowest in Oreochromis niloticus and Coptidon zillii (formerly Tilapia zillii. This current finding indicates that the water is safe for both aquatic life and domestic purpose but not suitable for direct human consumption without being properly treated. However, there is the need for regular monitoring of the heavy metals load in this water body and the aquatic organisms because of the long term effects


2009 ◽  
Vol 57 (3) ◽  
pp. 307-320
Author(s):  
G. Rabnecz ◽  
G. Záray ◽  
L. Lévai ◽  
F. Fodor

The effect of heavy metals on the leaf plasma membrane electron transport systems was investigated in connection with the tissue Fe concentration in Fe-sufficient and Fe-deficient cucumber leaves. Ten M μPb in the nutrient solution inhibited leaf ferricyanide reduction by 20–26%, whereas 10 M μCd had a more drastic effect, with 80–83% inhibition. Ferricyanide reduction decreased by 14% when 1 mM Pb was applied in situ by vacuum infiltration into control leaf discs, whereas it decreased by 40% when 0.1 mM Cd was applied. Ferricyanide reduction was completely inhibited by 1 mM Cd. The ferricyanide reduction values were correlated with the heavy metal, Fe and chlorophyll concentrations in the leaves. A significant linear correlation was only found with the chlorophyll concentration. The data suggest that there are also direct effects on membranebound reductases, but these are of less significance. Using differentially Fe-deficient plants (grown with 0 to 300 nM Fe in the nutrient solution), a chlorophyll concentration of 0.9–1.0 mg g −1 fresh weight was estimated as the threshold for achieving the ferricyanide reduction levels found in the controls.


2021 ◽  
Author(s):  
Geoffrey Kariuki Kinuthia ◽  
Veronica Ngure ◽  
Luna Kamau

Abstract Background Levels of Mercury (Hg), Lead (Pb), Chromium (Cr), Cadmium (Cd), Thallium (Tl), and Nickel (Ni) in samples of wastewater, filamentous green algae (spirogyra) and urban mosquitoes obtained from open wastewater channels in Nairobi industrial area, Kenya, was established. Industrial wastewater may contain hazardous heavy metals upon exposure. Aquatic organisms in wastewater may accumulate the toxic elements with time. Therefore, human population living in informal settlements in Nairobi industrial area risk exposure to such toxic elements. Biomonitoring using aquatic organisms can be key in metal exposure assessment. Results Pb, Cr, & Ni levels ranged from 3.08 to 15.31 µg/L while Tl, Hg, & Cd levels ranged from 0.05 to 0.12 µg/L in wastewater. Pb, Cr, Ni, & Cd levels were above WHO, Kenya & US EPA limits for wastewater but Hg was not. Metals in tap water (control) which ranged from 0.01 to 0.2 µg/L was below WHO, US EPA, & Kenya standard limits. Pb, Cr, Tl, & Ni levels in assorted field mosquitoes were 1.3 to 2.4 times higher than in assorted laboratory-reared mosquitoes. Hg & Cd concentrations in laboratory-reared mosquitoes (0.26 mg/L & 1.8 mg/L respectively) was higher than in field mosquitoes (0.048 mg/L & 0.12 mg/L respectively). Pb, Cr, Ni, & Cd levels in green filamentous algae were 110.62, 29.75, 14.45, & 0.44 mg/L respectively and above WHO limits for vegetable plants. Hg level in algae samples (0.057 mg/L) was below WHO standard limits but above Kenya & US EPA limits in vegetables. Correlations for Pb & Hg (r = 0.957; P < 0.05); Cd & Cr (r = 0.985; P < 0.05) in algae samples were noted. The metal concentrations in the samples were in the order, wastewater < mosquitoes < filamentous green algae. Conclusion Samples of wastewater, mosquitoes and filamentous green algae from open wastewater channels and immediate vicinity, in Nairobi industrial area (Kenya) contained Hg, Pb, Cr, Cd, Tl, and Ni. Urban mosquitoes and filamentous green algae can play a role of metal biomonitoring in wastewater. The possibility of urban mosquitoes transferring the heavy metals to their hosts when sucking blood should be investigated.


2020 ◽  
Vol 10 ◽  
pp. 30-45
Author(s):  
Ali A.S. Sayed ◽  
Farouk M. Gadallah ◽  
Mohamed A. Seif El-Yazal ◽  
Gamal A. Abdel-Samad

This experiment was conducted to found the connection between low temperature stress in vivo conditions (ambient-air temperature) and the changes in some physiological and biochemical events (leaf pigments and chlorophyll fluorescence) of mango trees in response to exposure to natural low temperature (cold). To verify this objective, 12 popular commonly mango cultivars (25 years old) which grown in private orchard in Fayoum Governorate, Egypt were selected for this study which carried out during the period from November to March of years; 2012 and 2013. The selected cultivars were: Alphonso, Baladi, Bullock's Heart, Helmand, Hindi Besennara, Mabrouka, Mestekawy, Nabeeh, Oweisi, Spates, Taimour and Zebda. Based on the obtained results, it can be stated that, chlorophyll (a) concentration in the leaves was significantly differed among the cultivars throughout the whole sampling times, in this respect, Helmand one gave the highest one while, and the highest one by sampling times was November one. The concentration of chlorophyll (b) was significant as effected by the effect of cultivars and sampling time recorded the highest value by the cultivar of Spates and December sample, respectively. Total chlorophyll concentration in the leaves reached its peak by the cultivar of Nabeeh and sampling time of December as compared to others. The both of Ewais cultivar and the sample of March showed the highest values of carotenoids concentration in the leaves. The levels of anthocyanin in leaves were significantly differed as affected by the cultivars and sampling times, indicating that the cultivar of Helmand and November sample recorded the highest values of anthocyanin in leaves. The greatest reductions in Fv/Fmratio were recorded at month of November and indicated that the reductions were in the order of Alphonso˃ Mabrouka˃Taimour˃ others. The effect of sampling time, cultivars and their interaction on Fv/Fm were significant, but small between some values of Fv/Fm.


Sign in / Sign up

Export Citation Format

Share Document