scholarly journals SM-CO BASED MAGNETIC SYSTEM FOR 10 MEV TECHNOLOGICAL ELECTRON ACCELERATOR LU-10M

Rare-earth permanent magnets are widely used in the accelerators of charged particles. However, the magnetic performance under irradiation remains a key issue for the most high energy applications such as accelerators with the energy up to 10 MeV. The aim of the work was to assess radiation and magnetic stability of Sm-Co and Nd-Fe-B permanent magnets under the direct electron irradiation with the energy of 10 MeV and bremsstrahlung. Sm-Co and Nd-Fe-B permanent magnets were produced by powder metallurgy method including PLP for the latter. The absorbed dose imposed by electron beam was 16 Grad (the total flux of electron per 1 cm2 was 1.4х1017) and 160 Grad. The radiation activity of both Nd-Fe-B and Sm-Co magnets was within the acceptable limits after the irradiation. This makes rare-earth magnetic materials suitable for such applications. In order to avoid overheating during electron irradiation, magnets were cooled with the water (T=38 °С). In order to estimate the changes in magnetic flux, the integral of the 3D interpolation normal component of magnetic flux was used. Calculated S parameter measured in arbitrary units was chosen as integrated z-component of magnetic flux. It was shown that magnetic flux of Nd-Fe-B magnets became 0.92 and 0.717 of initial values for 16 Grad and 160 Grad correspondingly, but the magnetic flux of Sm-Co magnets had no change to the same absorbed doses. Thus, Sm-Co magnets were chosen for simulating and designing magnetic system for electron beam analysis of a technological accelerator with energy up to 10 MeV. The distance between the poles of the magnet was 25.25 mm. The highest magnetic field inside the magnetic system was 0.3110 T. The effective distance was 33.53 mm. The measured parameters of the magnetic system based on Sm-Co magnets agreed with the simulation experiment. Magnetic system can also be used to adjust the accelerator in the energy range up to 10 MeV.

2020 ◽  
pp. 23-27
Author(s):  
V.A. Bovda ◽  
А.М. Bovda ◽  
I.S. Guk ◽  
A.N. Dovbnya ◽  
V.N. Lyashchenko ◽  
...  

Four Nd-Fe-B magnets underwent irradiation under 23 MeV electron beam. Nd-Fe-B magnets were magnetized to the technical saturation in the magnetic field of 3.5 T before electron treatment. Two Nd-Fe-B samples (1 and 2) were exposed to the direct electron beam with the energy of 23 MeV. Sample 2 was shielded by tungsten converter. The thickness of the tungsten converter was 4.72 mm. The absorbed dose for the samples was 16 GRad. Sample 3 was subjected to bremsstrahlung of electron irradiation with the energy of 23 MeV. Sample 4 was used as a reference sample for calibration and control measurements. While magnetic flux of sample under direct electron beam of 23 MeV was changed significantly, sample 2 showed the change of magnetic flux to a less degree. Magnetic performance of sample 3 corresponded closely to the initial state.


2019 ◽  
pp. 13-16
Author(s):  
V.А. Bovda ◽  
А.М. Bovda ◽  
I.S. Guk ◽  
А.N. Dovbnya ◽  
V.N. Lyashchenko ◽  
...  

Nd-Fe-B and Sm-Co magnets were irradiated by electron beam with the energy of 10 MeV and bremsstrahlung. The absorbed dose was 16 and 160 Grad. It was found that magnetic flux of Nd-Fe-B magnets decrease with irradiation, whereas Sm-Co magnets keeps magnetic performance.


2020 ◽  
pp. 7-10
Author(s):  
A.Ya. Krasil'nikov ◽  
A.A. Krasilnikov ◽  
D.V. Taranov

The possibility of applying the standard calculation of the shear force of thin high-coercive neodymium— iron—boron permanent magnets in magnetic systems and magnetic couplings is considered. A correction factor is proposed for calculating the shear force in systems with thin magnets, which allows at the stage of developing sealed equipment to calculate the shear force of permanent magnets in these systems. Keywords: magnetic system, magnetic coupling, permanent magnet, shear force. [email protected]


Author(s):  
A. Ya. Krasilʼnikov ◽  
A. A. Krasilʼnikov

The article considers the possibility of using a standard method for calculating the shear force of thin, high-coercivity neodymium–iron–boron type permanent magnets in magnetic clutches (couplings). The research results allowed to introduce a correction coefficients in the method of calculating the transmitting torque in magnetic clutches (couplings) with thin magnets. The possibility of 08H22N6T brand steel using for magnetic flux conductors manufacturing in a magnetic couplings.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 306 ◽  
Author(s):  
Adrian Barylski ◽  
Krzysztof Aniołek ◽  
Andrzej S. Swinarew ◽  
Sławomir Kaptacz ◽  
Jadwiga Gabor ◽  
...  

This study analyzed the effects of irradiation of polytetrafluoroethylene (PTFE) containing 40% of bronze using an electron beam with energy of 10 MeV. Dosages from 26 to156 kGy (2.6–15.6 Mrad) were used. The impact of a high-energy electron beam on the thermal, spectrophotometric, mechanical, and tribological properties was determined, and the results were compared with those obtained for pure PTFE. Thermal properties studies showed that such irradiation caused changes in melting temperature Tm and crystallization temperature Tc, an increase in crystallization heat ∆Hc, and a large increase in crystallinity χc proportional to the absorbed dose for both polymers. The addition of bronze decreased the degree of crystallinity of PTFE by twofold. Infrared spectroscopy (FTIR) studies confirmed that the main phenomenon associated with electron beam irradiation was the photodegradation of the polymer chains for both PTFE containing bronze and pure PTFE. This had a direct effect on the increase in the degree of crystallinity observed in DSC studies. The use of a bronze additive could lead to energy dissipation over the additive particles. An increase in hardness H and Young’s modulus E was also observed. The addition of bronze and the irradiation with an electron beam improved of the operational properties of PTFE.


2017 ◽  
Vol 871 ◽  
pp. 137-144 ◽  
Author(s):  
Nikolaus Urban ◽  
Alexander Meyer ◽  
Sven Kreitlein ◽  
Felix Leicht ◽  
Jörg Franke

In this publication we report on our progress in investigating the energy efficient production of rare earth permanent magnets by Laser Beam Melting in the powder bed (LBM). This innovative additive manufacturing process offers the potential to produce magnets of complex geometries without an energy intensive oven sintering step. Another advantage that increases the efficiency of this possible new process route is the high degree of material utilization due to a near net shape production of the magnets. Hence only little material is wasted during a post processing machining step. The main challenge in processing rare earth magnet alloys by means of LBM is the brittle mechanical behavior of the material and the change in microstructure due to the complete remelting of the magnet powder. We therefor expanded the parameter study presented in previous work in order to further increase relative density and magnetic properties of the specimens. In this context process stability and reproducibility could also be increased. This was achieved by investigating the impact of different exposure patterns and varying laser spot sizes. Simultaneously to the experiments the energy consumption of the LBM process was measured and compared with conventional rare earth magnet production routes.


2021 ◽  
pp. 46-51
Author(s):  
V.A. Bovda ◽  
A.M. Bovda ◽  
I.S. Guk ◽  
V.N. Lyashchenko ◽  
A.O. Mytsykov ◽  
...  

High performance rare-earth permanent magnets become crucial components of modern electron accelerators. PLP (pressless process) method was described as the advanced production step in the current rare-earth permanent magnet manufacturing. The radiation resistance of SmCo and Nd-Fe-B magnets under electron beam with 10 and 23 MeV and bremsstrahlung were studied. Dipole magnetic systems on the base of rare-earth permanent magnets were designed for the technological electron accelerators at NSC KIPT.


Sign in / Sign up

Export Citation Format

Share Document