scholarly journals Life Cycle Assessment dan Life Cycle Cost untuk Serat Kenaf

2020 ◽  
Vol 9 (3) ◽  
pp. 213-224
Author(s):  
Desrina Yusi Irawati ◽  
Melati Kurniawati

Kenaf fiber from the kenaf plant is the excellent raw material for industry because of the various diversified products it produces. To develop sustainable kenaf fiber, information is needed on the strengths and weaknesses of kenaf cultivation systems with respect to productivity and environmental impact. Therefore, a comprehensive environmental and economic impact assessment was conducted from cultivating kenaf to kenaf fiber. The environmental impact assessment uses the Life Cycle Assessment (LCA) method and economic calculations from the life cycle of kenaf to kenaf fiber to collectors use the Life Cycle Cost (LCC) method. The calculation of environmental impacts is in accordance with the stages of ISO 14040, using a single score assessment. The LCA results show that the treatment stage is the highest contributor of the three groups of impact categories. The highest to the lowest in the impact category group that was influenced by the treatment stage were resources with a value of 21.4 mPt, human health with a value of 8.76 mPt, and ecosystem quality with a value of 1.91 mPt. The cost identified through the LCC is Rp. 6,088,468,333, NVP and B/Cnet are positive. The results of the sensitivity analysis if there is a reduction in production> 6%, the business is still profitable and can be run.

2011 ◽  
Vol 471-472 ◽  
pp. 999-1004 ◽  
Author(s):  
Mariam Al-Ma'adeed ◽  
Gozde Ozerkan ◽  
Ramazan Kahraman ◽  
Saravanan Rajendran ◽  
Alma Hodzic

Although recycled polymers and reinforced polymer composites have been in use for many years there is little information available on their environmental impacts. The goal of the present study is to analyze the environmental impact of new composite materials obtained from the combination of recycled thermoplastics (polypropylene [PP] and polyethylene [PE]) with mineral fillers like talc and with glass fiber. The environmental impact of these composite materials is compared to the impact of virgin PP and PE. The recycled and virgin materials were compared using life cycle assessment method according to their environmental effects. Within the scope of the study, GaBi software was used for Life Cycle Assessment (LCA) analysis. From cradle-to-grave life cycle inventory studies were performed for 1 kg of each of the thermoplastics. Landfilling was considered as reference scenario and compared with filled recycled plastics. A quantitative impact assessment was performed for four environmental impact categories, global warming (GWP) over a hundred years, human toxicity (HTP), abiotic depletion (ADP) and acidification potential (AP) were taken into consideration during LCA. In the comparison of recycled and virgin polymers, it was seen that recycling has lower environmental effect for different impact assessment methods like acidification potential, abiotic depletion, human toxicity and global warming.


2021 ◽  
Vol 17 (1) ◽  
pp. 21-35
Author(s):  
Mária Réka Antal ◽  
Levente Dénes ◽  
Zsigmond András Vas ◽  
András Polgár

Edgebanding affects both the visual appearance and edge protection of wood-based panels. In order for edgebanding to provide the desired protection, it must adhere strongly to the entire surface of the panel edges and maintain this adhesion throughout the life of the product. The present research compares conventional and so-called zero-joint edgebandings in terms of water and steam resistance, and examines the environmental impacts of edgebanding technologies using Life Cycle Assessment (LCA). In-line with our hypothesis, our test results showed that corners are the critical points of edgebanded furniture fronts, especially when exposed to moisture. Due to high variations in measurements, there is no significant difference between the two edgebanding methods at the beginning. However, differences become more significant after longer treatment times. These differences amount to two quality categories after 6 hours and three quality categories after 12 and 24 hours. The edgebanded fronts exposed to water for less than 30 minutes experience no significant deteriorations with any of the edgebanding methods. In the case of steam resistance, zero-joint edgebanding provides better protection, especially after the second and third treatment cycle. We can state that the surplus costs of zero-joint technology are 1.45 times greater than costs associated with conventional technology. Both show the considerable costs of edging materials, chipboard, and electrical energy. The applied environmental life cycle assessment (LCA) method corresponds to the requirements of ISO 14040:2006 and ISO 14044:2006 standards. We built up the environmental inventory and the life cycle model of the manufacturing technology using the GaBi Professional LCA software. In the impact assessment, we analysed the specific environmental impact categories of the differing production processes by technology according to the operation order of the manufacturing technology. In relation to traditional and the zero-joint edging technologies, according to all impact assessment methods, the life-cycle contribution rate was uniformly 47% traditional – 53% zero-joint by impact category. The higher indicator values of the zero-joint method are due to larger edge material consumption and higher energy demand. Zero-joint technology appears to avoid the application of conventional hot melt adhesives, but replacing these adhesives does not necessarily result in better environmental indicators. Nevertheless, zero-joint egdebanding does not just improve aesthetic appearance but also exceeds the durability provided by conventional edgebanding technology.


2010 ◽  
Vol 5 (3) ◽  
pp. 95-106 ◽  
Author(s):  
Neethi Rajagopalan ◽  
Melissa M Bilec ◽  
Amy E Landis

Innovative, sustainable construction products are emerging in response to market demands. One potential product, insulating concrete forms (ICFs), offers possible advantages in energy and environmental performance when compared with traditional construction materials. Even though ICFs are in part derived from a petroleum-based product, the benefits in the use phase outweigh the impacts of the raw material extraction and manufacturing phase. This paper quantitatively measures ICFs' performance through a comparative life cycle assessment of wall sections comprised of ICF and traditional wood-frame. The life cycle stages included raw materials extraction and manufacturing, construction, use and end of life for a 2,450 square foot house in Pittsburgh, Pennsylvania. Results showed that even though building products such as ICFs are energy intensive to produce and thus have higher environmental impacts in the raw materials extraction and manufacturing phase, the use phase dominated in the life cycle. For the use phase, the home constructed of ICFs consumed 20 percent less energy when compared to a traditional wood-frame structure. The results of the impact assessment show that ICFs have higher impacts over wood homes in most impact categories. The high impacts arise from the raw materials extraction and manufacturing phase of ICFs. But there are a number of embedded unit processes such as disposal of solid waste and transport of natural gas that contribute to this high impact and identifying the top unit process and substance contributors to the impact category is not intuitive. Selecting different unit processes or impact assessment methods will yield dissimilar results and the tradeoffs associated with every building product should be considered after studying the entire life cycle in detail.


2020 ◽  
pp. 152808372092473 ◽  
Author(s):  
M Ramesh ◽  
C Deepa ◽  
L Rajesh Kumar ◽  
MR Sanjay ◽  
Suchart Siengchin

From the beginning of humanity, our generation has been on the edge of finding suitable solutions to increase the product’s life-cycle and reduce the environmental impact of the product. Life-cycle assessment is a process to evaluate the effects of products or services whereas environmental impact assessment is an inter-related process of evaluating the environmental impact of a product or service. Plant fibre reinforced composites are developed by researchers, which are kindled by economic and environmental trepidations. The forest’s wood resources will decline and deplete due to environmental issues caused by natural and renewable resources. The main objective of this review is to conduct life-cycle assessment and environmental impact assessment studies on plant fibres and manufacturing of bio-composites from these fibres. It identifies the differences and causes to the environment, in particular about the total effect on the surrounding atmosphere. Another aim of this work is to assess a techno-economic feasibility based on the environmental impact category. In addition to this, inventory assessments of these composites are also dealt with, alongside the industrial applications. This review concludes a summary of current research and point out the opportunities and challenges for future researchers.


2021 ◽  
Vol 26 (2) ◽  
pp. 99
Author(s):  
Febilian Adiwinata ◽  
Suprihatin Suprihatin ◽  
Mulyorini Rahayuningsih

Coffee is one of Indonesia's leading commodity that has the potential to be developed for agro-industry. High coffee production has encouraged the establishment of a small and medium coffee industry. The purpose of this study is to analyze possible strategies for implementing cleaner production and evaluate the impact on the environment using Life Cycle Assessment (LCA) method with a gate to gate scope. The stages of cleaner production research used quick scan techniques, source identification, cause evaluation and option generation implementation. LCA research stages with the determination of the objectives and scope of research, inventory analysis, environmental impact assessment and implementation of improvements. Greenhouse gases (GHG) emission was assessed as an environmental impact parameter. The results showed the alternative potential for cleaner production that was applied the manufacture of drying domes (Payback Period/PBP) 3.18 months with an investment ofRp. 2,285,000), procurement of generator machines (PBP 1.16 months with an investment of Rp. 5,860,000), making air circulation in roasting room (PBP 0.07 months with an investment of Rp. 1,268,000), making of solid waste composting reactor (PBP 2.18 months with an investment of Rp. 3,440,000) and addition packing equipment (PBP 0.45 month with an investment of Rp. 3.057 .000). The results of the LCA analysis show that 1,000 Kg of dry-processed coffee requires energy of 869.92 MJ and produces GHG emissions of 95.58 Kg CO₂eq / ton coffee fruits or 0.42Kg CO₂eq / Kg coffee powder equal to 2.389Kg CO₂eq/month and 28.674Kg CO₂eq/year.Key words : environmental impact assessment, life cycle assessment, small coffee industries


2021 ◽  
Vol 13 (9) ◽  
pp. 5322
Author(s):  
Gabriel Zsembinszki ◽  
Noelia Llantoy ◽  
Valeria Palomba ◽  
Andrea Frazzica ◽  
Mattia Dallapiccola ◽  
...  

The buildings sector is one of the least sustainable activities in the world, accounting for around 40% of the total global energy demand. With the aim to reduce the environmental impact of this sector, the use of renewable energy sources coupled with energy storage systems in buildings has been investigated in recent years. Innovative solutions for cooling, heating, and domestic hot water in buildings can contribute to the buildings’ decarbonization by achieving a reduction of building electrical consumption needed to keep comfortable conditions. However, the environmental impact of a new system is not only related to its electrical consumption from the grid, but also to the environmental load produced in the manufacturing and disposal stages of system components. This study investigates the environmental impact of an innovative system proposed for residential buildings in Mediterranean climate through a life cycle assessment. The results show that, due to the complexity of the system, the manufacturing and disposal stages have a high environmental impact, which is not compensated by the reduction of the impact during the operational stage. A parametric study was also performed to investigate the effect of the design of the storage system on the overall system impact.


2021 ◽  
Vol 13 (13) ◽  
pp. 7386
Author(s):  
Thomas Schaubroeck ◽  
Simon Schaubroeck ◽  
Reinout Heijungs ◽  
Alessandra Zamagni ◽  
Miguel Brandão ◽  
...  

To assess the potential environmental impact of human/industrial systems, life cycle assessment (LCA) is a very common method. There are two prominent types of LCA, namely attributional (ALCA) and consequential (CLCA). A lot of literature covers these approaches, but a general consensus on what they represent and an overview of all their differences seems lacking, nor has every prominent feature been fully explored. The two main objectives of this article are: (1) to argue for and select definitions for each concept and (2) specify all conceptual characteristics (including translation into modelling restrictions), re-evaluating and going beyond findings in the state of the art. For the first objective, mainly because the validity of interpretation of a term is also a matter of consensus, we argue the selection of definitions present in the 2011 UNEP-SETAC report. ALCA attributes a share of the potential environmental impact of the world to a product life cycle, while CLCA assesses the environmental consequences of a decision (e.g., increase of product demand). Regarding the second objective, the product system in ALCA constitutes all processes that are linked by physical, energy flows or services. Because of the requirement of additivity for ALCA, a double-counting check needs to be executed, modelling is restricted (e.g., guaranteed through linearity) and partitioning of multifunctional processes is systematically needed (for evaluation per single product). The latter matters also hold in a similar manner for the impact assessment, which is commonly overlooked. CLCA, is completely consequential and there is no limitation regarding what a modelling framework should entail, with the coverage of co-products through substitution being just one approach and not the only one (e.g., additional consumption is possible). Both ALCA and CLCA can be considered over any time span (past, present & future) and either using a reference environment or different scenarios. Furthermore, both ALCA and CLCA could be specific for average or marginal (small) products or decisions, and further datasets. These findings also hold for life cycle sustainability assessment.


2021 ◽  
Vol 13 (14) ◽  
pp. 7831
Author(s):  
Shaobo Liang ◽  
Hongmei Gu ◽  
Richard Bergman

Global construction industry has a huge influence on world primary energy consumption, spending, and greenhouse gas (GHGs) emissions. To better understand these factors for mass timber construction, this work quantified the life cycle environmental and economic performances of a high-rise mass timber building in U.S. Pacific Northwest region through the use of life-cycle assessment (LCA) and life-cycle cost analysis (LCCA). Using the TRACI impact category method, the cradle-to-grave LCA results showed better environmental performances for the mass timber building relative to conventional concrete building, with 3153 kg CO2-eq per m2 floor area compared to 3203 CO2-eq per m2 floor area, respectively. Over 90% of GHGs emissions occur at the operational stage with a 60-year study period. The end-of-life recycling of mass timber could provide carbon offset of 364 kg CO2-eq per m2 floor that lowers the GHG emissions of the mass timber building to a total 12% lower GHGs emissions than concrete building. The LCCA results showed that mass timber building had total life cycle cost of $3976 per m2 floor area that was 9.6% higher than concrete building, driven mainly by upfront construction costs related to the mass timber material. Uncertainty analysis of mass timber product pricing provided a pathway for builders to make mass timber buildings cost competitive. The integration of LCA and LCCA on mass timber building study can contribute more information to the decision makers such as building developers and policymakers.


2021 ◽  
Vol 12 (5) ◽  
pp. 6504-6515

With the development of additive manufacturing technology, 3D bone tissue engineering scaffolds have evolved. Bone tissue engineering is one of the techniques for repairing bone abnormalities caused by a variety of circumstances, such as injuries or the need to support damaged sections. Many bits of research have gone towards developing 3D bone tissue engineering scaffolds all across the world. The assessment of the environmental impact, on the other hand, has received less attention. As a result, the focus of this study is on developing a life cycle assessment (LCA) model for 3D bone tissue engineering scaffolds and evaluating potential environmental impacts. One of the methodologies to evaluating a complete environmental impact assessment is life cycle assessment (LCA). The cradle-to-grave method will be used in this study, and GaBi software was used to create the analysis for this study. Previous research on 3D bone tissue engineering fabrication employing poly(ethylene glycol) diacrylate (PEGDA) soaked in dimethyl sulfoxide (DMSO), and diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (TPO) as a photoinitiator will be reviewed. Meanwhile, digital light processing (DLP) 3D printing is employed as the production technique. The GaBi program and the LCA model developed to highlight the potential environmental impact. This study shows how the input and output of LCA of 3D bone tissue engineering scaffolds might contribute to environmental issues such as air, freshwater, saltwater, and industrial soil emissions. The emission contributing to potential environmental impacts comes from life cycle input, electricity and transportation consumption, manufacturing process, and material resources. The results from this research can be used as an indicator for the researcher to take the impact of the development of 3D bone tissue engineering on the environment seriously.


2013 ◽  
Vol 4 (2) ◽  
pp. 103-109 ◽  
Author(s):  
E. Klaversma ◽  
A. W. C. van der Helm ◽  
J. W. N. M. Kappelhof

Waternet, the water cycle company of Amsterdam and surrounding areas, uses the life cycle assessment (LCA) method to evaluate the environmental impact of investment decisions and to determine the potential reduction of direct and indirect greenhouse gas (GHG) emissions of different alternatives. This approach enables Waternet to fulfil its corporate objective to improve sustainability and to become climate neutral by 2020. Three example studies that give a good overview of the use of LCAs at Waternet and problems encountered are discussed: phosphate removal and recovery from wastewater, pH correction of drinking water with carbon dioxide (CO2) and materials for drinking water distribution pipes. The environmental impact assessments were performed in SimaPro 7 using the ReCiPe method and the Intergovernmental Panel on Climate Change Global Warming Potential (IPCC GWP) 100a method. The Ecoinvent 2.0 and 2.2 databases were used for the material and process data. From the examples described, it can be concluded that only the phosphate removal case had a significant effect on the climate footprint. The article discusses applications and limitations of the LCA technique. The most important limitation is that the impact of water consumption and the possible impact of effluent compounds to surface water are not considered within the used methods.


Sign in / Sign up

Export Citation Format

Share Document