MATHEMATICAL MODELING OF THE FLAME TEMPERATURE OF NATURAL GAS THROUGH METHANE CONCENTRATION, TEMPERATURE AND EXCESS AIR IN REHEATING FURNACES

Author(s):  
Diego Jhovanny Mariños Rosado ◽  
Samir Boset Rojas Chávez ◽  
João Carvalho
Author(s):  
A. P. Shaikin ◽  
I. R. Galiev

The article analyzes the influence of chemical composition of hythane (a mixture of natural gas with hydrogen) on pressure in an engine combustion chamber. A review of the literature has showed the relevance of using hythane in transport energy industry, and also revealed a number of scientific papers devoted to studying the effect of hythane on environmental and traction-dynamic characteristics of the engine. We have studied a single-cylinder spark-ignited internal combustion engine. In the experiments, the varying factors are: engine speed (600 and 900 min-1), excess air ratio and hydrogen concentration in natural gas which are 29, 47 and 58% (volume).The article shows that at idling engine speed maximum pressure in combustion chamber depends on excess air ratio and proportion hydrogen in the air-fuel mixture – the poorer air-fuel mixture and greater addition of hydrogen is, the more intense pressure increases. The positive effect of hydrogen on pressure is explained by the fact that addition of hydrogen contributes to increase in heat of combustion fuel and rate propagation of the flame. As a result, during combustion, more heat is released, and the fuel itself burns in a smaller volume. Thus, the addition of hydrogen can ensure stable combustion of a lean air-fuel mixture without loss of engine power. Moreover, the article shows that, despite the change in engine speed, addition of hydrogen, excess air ratio, type of fuel (natural gas and gasoline), there is a power-law dependence of the maximum pressure in engine cylinder on combustion chamber volume. Processing and analysis of the results of the foreign and domestic researchers have showed that patterns we discovered are applicable to engines of different designs, operating at different speeds and using different hydrocarbon fuels. The results research presented allow us to reduce the time and material costs when creating new power plants using hythane and meeting modern requirements for power, economy and toxicity.


Fuel ◽  
2021 ◽  
Vol 302 ◽  
pp. 121179
Author(s):  
Mingming Huang ◽  
Ruichuan Li ◽  
Jikang Xu ◽  
Shen Cheng ◽  
Haoxin Deng ◽  
...  

Author(s):  
Brian Hollon ◽  
Erlendur Steinthorsson ◽  
Adel Mansour ◽  
Vincent McDonell ◽  
Howard Lee

This paper discusses the development and testing of a full-scale micro-mixing lean-premix injector for hydrogen and syngas fuels that demonstrated ultra-low emissions and stable operation without flashback for high-hydrogen fuels at representative full-scale operating conditions. The injector was fabricated using Macrolamination technology, which is a process by which injectors are manufactured from bonded layers. The injector utilizes sixteen micro-mixing cups for effective and rapid mixing of fuel and air in a compact package. The full scale injector is rated at 1.3 MWth when operating on natural gas at 12.4 bar (180 psi) combustor pressure. The injector operated without flash back on fuel mixtures ranging from 100% natural gas to 100% hydrogen and emissions were shown to be insensitive to operating pressure. Ultra-low NOx emissions of 3 ppm were achieved at a flame temperature of 1750 K (2690 °F) using a fuel mixture containing 50% hydrogen and 50% natural gas by volume with 40% nitrogen dilution added to the fuel stream. NOx emissions of 1.5 ppm were demonstrated at a flame temperature over 1680 K (2564 °F) using the same fuel mixture with only 10% nitrogen dilution, and NOx emissions of 3.5 ppm were demonstrated at a flame temperature of 1730 K (2650 °F) with only 10% carbon dioxide dilution. Finally, using 100% hydrogen with 30% carbon dioxide dilution, 3.6 ppm NOx emissions were demonstrated at a flame temperature over 1600 K (2420 °F). Superior operability was achieved with the injector operating at temperatures below 1470 K (2186 °F) on a fuel mixture containing 87% hydrogen and 13% natural gas. The tests validated the micro-mixing fuel injector technology and the injectors show great promise for use in future gas turbine engines operating on hydrogen, syngas or other fuel mixtures of various compositions.


2019 ◽  
Vol 9 (4) ◽  
pp. 27-32
Author(s):  
Olga A. BALANDINA ◽  
Svetlana M. PURING

The analysis of the values of the concentrations of the formed nitrogen oxides and the temperatures of the jet plume under various conditions of mixture formation is carried out. The plots of the distribution of torch temperatures and concentrations of nitric oxide in the calculated area for oxidizer temperatures of 20, 60, 100, 150, and 200 ° C were obtained and analyzed. Mathematical modeling of the gaseous fuel combustion process was carried out using the FlowVision software package. An analysis of the results showed that a decrease in the temperature of the air supplied as an oxidizing agent leads to a significant decrease in the concentration of nitrogen oxides in flue gases, while not significantly affecting the change in the flame temperature. The research results can be used to solve the problems of optimizing boiler plants, in order to reduce harmful flue gas emissions. Further modeling is planned to determine the dependence of the influence of various factors on the degree of formation of nitrogen oxides in the flue gases of boiler plants.


Methane ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 24-37
Author(s):  
Muhammad Alfiza Farhan ◽  
Yuichi Sugai ◽  
Nuhindro Priagung Widodo ◽  
Syafrizal Syafrizal

The leakage of methane from the subsurface on the coalfield or natural gas field invariably becomes an important issue nowadays. In notable addition, materials such as activated carbon, zeolites, and Porapak have been successfully identified as adsorbents. Those adsorbents could adsorb methane at atmospheric pressure and room temperature. Therefore, in this scholarly study, a new method using adsorbents to detect points of methane leakage that can cover a wide-scale area was developed. In the beginning, the most capable adsorbent should be determined by quantifying adsorbed methane amount. Furthermore, checking the possibility of adsorption in the column diffusion and desorption method of adsorbents is equally necessary. The most capable adsorbent was activated carbon (AC), which can adsorb 1.187 × 10−3 mg-CH4/g-AC. Hereinafter, activated carbon successfully can adsorb methane through column diffusion, which simulates the situation of on-site measurement. The specific amount of adsorbed methane when the initial concentrations of CH4 in a bag were 200 ppm, 100 ppm, and 50 ppm was found to be 0.818 × 10−3 mg-CH4/g-AC, 0.397 × 10−3 mg-CH4/g-AC, 0.161 × 10−3 mg-CH4/g-AC, respectively. Desorption of activated carbon analysis shows that methane concentration increases during an hour in the temperature bath under 80 °C. In conclusion, soil methane leakage points can be detected using activated carbon by identifying the observed methane concentration increase.


Author(s):  
Clive G. Robinson ◽  
Zoë E. Wattis ◽  
Colin Dooley ◽  
Sladjana Popovic

In the light of recent experience of wildfires in Alberta and British Columbia, Alliance Pipeline has strengthened their emergency preparedness in dealing with external fire events that have the potential to affect above-ground facilities connected with their high pressure natural gas pipeline system. As part of this initiative a quantitative methodology has been developed that enables the effects of a wildfire on an above-ground pipeline facility to be assessed. The methodology consists of three linked calculations which assess: 1. the severity of the wildfire, based on information from the Canadian Wildland Fire Information System, 2. the transmission of thermal radiation from the wildfire to the facility, and, 3. the response of equipment, structures and buildings to the incident thermal radiation. The predictions of the methodology agree well with the actual damage observed at a lateral block valve site following a wildfire in 2016. Application to example facility types (block valve sites, meter stations and compressor stations) has demonstrated that, in general, damage is only predicted for more vulnerable items such as cables. The sensitivity of the predictions of the methodology to the input parameters and key modelling uncertainties has been examined. This demonstrates that the results are sensitive to the distance of the facility from the tree line and the assumed vegetation type. This shows the importance of verifying the location relative to the vegetation and selecting the appropriate vegetation type from the Canadian Wildland Fire Information System for site specific assessments. The predictions of the methodology are particularly sensitive to the assumed flame temperature. However, a value has been chosen that gives good agreement with measured thermal radiation values from wildfires. Of the mitigation options considered, the most effective and practical is to increase the distance to the tree line. This measure has the advantage of reducing radiation levels for all items on the site. Even though the work shows that failure of exposed pipework due to wildfires is unlikely, maintaining the flow within pipes is recommended as this increases the radiative flux at which failure is predicted to occur. However, as failure of cables and hence control systems would occur at a lower flux levels the fail-safe actions of such systems needs to be confirmed. Shielding of cables or items of equipment in general is likely to be impractical but could be considered for particularly vulnerable equipment or locations.


2019 ◽  
Vol 48 (3) ◽  
pp. 762-769
Author(s):  
Victoria S. Fusé ◽  
José I. Gere ◽  
Daiana Urteaga ◽  
M. Paula Juliarena ◽  
Sergio A. Guzmán ◽  
...  

2020 ◽  
pp. 146808742097775
Author(s):  
Ziqing Zhao ◽  
Zhi Wang ◽  
Yunliang Qi ◽  
Kaiyuan Cai ◽  
Fubai Li

To explore a suitable combustion strategy for natural gas engines using jet ignition, lean burn with air dilution, stoichiometric burn with EGR dilution and lean burn with EGR dilution were investigated in a single-cylinder natural gas engine, and the performances of two kinds of jet ignition technology, passive jet ignition (PJI) and active jet ignition (AJI), were compared. In the study of lean burn with air dilution strategy, the results showed that AJI could extend the lean limit of excess air ratio (λ) to 2.1, which was significantly higher than PJI’s 1.6. In addition, the highest indicated thermal efficiency (ITE) of AJI was shown 2% (in absolute value) more than that of PJI. Although a decrease of NOx emission was observed with increasing λ in the air dilution strategy, THC and CO emissions increased. Stoichiometric burn with EGR was proved to be less effective, which can only be applied in a limited operation range and had less flexibility. However, in contrast to the strategy of stoichiometric burn with EGR, the strategy of lean burn with EGR showed a much better applicability, and the highest ITE could achieve 45%, which was even higher than that of lean burn with air dilution. Compared with the most efficient points of lean burn with pure air dilution, the lean burn with EGR dilution could reduce 78% THC under IMEP = 1.2 MPa and 12% CO under IMEP = 0.4 MPa. From an overall view of the combustion and emission performances under both low and high loads, the optimum λ would be from 1.4 to 1.6 for the strategy of lean burn with EGR dilution.


Sign in / Sign up

Export Citation Format

Share Document