scholarly journals Disrupting Biofilm Formation and Antibiotic Resistance in Pseudomonas aeruginosa Using Phage-Delivered Sensitivity Cassettes: A Research Protocol

2021 ◽  
Vol 5 (12) ◽  
pp. 1-7
Author(s):  
Isabell Pitigoi ◽  
Courtney Ostromecki ◽  
Madelyn Fischer ◽  
Mitchell Shorgan
2016 ◽  
Vol 4 (2) ◽  
Author(s):  
Bhavani Manivannan ◽  
Niranjana Mahalingam ◽  
Sudhir Jadhao ◽  
Amrita Mishra ◽  
Pravin Nilawe ◽  
...  

We present the draft genome assembly of an extensively drug-resistant (XDR) Pseudomonas aeruginosa strain isolated from a patient with a history of genito urinary tuberculosis. The draft genome is 7,022,546 bp with a G+C content of 65.48%. It carries 7 phage genomes, genes for quorum sensing, biofilm formation, virulence, and antibiotic resistance.


10.3823/846 ◽  
2020 ◽  
Vol 10 (2) ◽  
Author(s):  
Abdelraouf A Elmanama ◽  
Suhaila Al-Sheboul ◽  
Renad I Abu-Dan

Abstract Pseudomonas aeruginosa threatens patient’s care. It is considered as the most complicated health care associated pathogen to be eliminated from infection site. The biofilm forming ability of P. aeruginosa, being a major virulence factor for most pathogenic microorganism, protects it from host immunity and contribute to antibiotic resistance of this organism. It is estimated that about 80% of infectious diseases are due to biofilm mode of growth. Biofilm forming ability of bacteria imparts antimicrobial resistance that leads to many persistent and chronic bacterial infections. The world is becoming increasingly under the threat of entering the “post-antibiotic era”, an era in which the rate of death from bacterial infections is higher than from cancer. This review focus on P. aeruginosa biofilm forming ability; definition, developmental stages, and significance. In addition, the quorum sensing and the antibiotic resistance of this pathogen is discussed. Keywords: Biofilm; bacterial adhesion; Pseudomonas aeruginosa; antimicrobial resistance; quorum sensing.


2021 ◽  
Vol 11 (6) ◽  
pp. 1075-1082
Author(s):  
S. Derakhshan ◽  
A. Rezaee ◽  
Sh. Mohammadi

Background and aim. Pseudomonas aeruginosa is considered as a notorious pathogen due to its multidrug resistance and life threatening infections. We investigated the relationship between type III secretion toxins, biofilm formation, and antibiotic resistance among clinical P. aeruginosa isolates. Methods. A total of 70 genetically distinct clinical P. aeruginosa isolates were characterized for antibiotic resistance by disk diffusion assay. Biofilm formation was evaluated by microtiter plate method and presence of four exo genes (exoS, exoU, exoT and exoY) was investigated by PCR. A p-value < 0.05 was regarded statistically significant. Results. The most effective antibiotics were Meropenem and Piperacillin. Multidrug resistance was more prevalent in the ciprofloxacin-resistant isolates than in the susceptible isolates. The most frequently identified exo was exoS (37.1%). Genotype exoS/exoT was found in 4 isolates, while genotype exoU/exoT was not found. Prevalence of exoS was generally higher in the susceptible isolates than in the resistant isolates. A significant association was found between the formation of strong biofilm and resistance to antibiotics (p < 0.05). Prevalence of exoY and exoU was higher in the non-strong biofilm producers compared to the strong biofilm producers. Conclusion. Our study revealed formation of strong biofilm along with antibiotic resistance and the presence of exo genes in P. aeruginosa isolates. Knowledge of virulence gene profiles and biofilm formation may be useful in deciding appropriate treatment.


2005 ◽  
Vol 187 (23) ◽  
pp. 8114-8126 ◽  
Author(s):  
Christopher J. Southey-Pillig ◽  
David G. Davies ◽  
Karin Sauer

ABSTRACT Phenotypic and genetic evidence supporting the notion of biofilm formation as a developmental process is growing. In the present work, we provide additional support for this hypothesis by identifying the onset of accumulation of biofilm-stage specific proteins during Pseudomonas aeruginosa biofilm maturation and by tracking the abundance of these proteins in planktonic and three biofilm developmental stages. The onset of protein production was found to correlate with the progression of biofilms in developmental stages. Protein identification revealed that proteins with similar function grouped within similar protein abundance patterns. Metabolic and housekeeping proteins were found to group within a pattern separate from virulence, antibiotic resistance, and quorum-sensing-related proteins. The latter were produced in a progressive manner, indicating that attendant features that are characteristic of biofilms such as antibiotic resistance and virulence may be part of the biofilm developmental process. Mutations in genes for selected proteins from several protein production patterns were made, and the impact of these mutations on biofilm development was evaluated. The proteins cytochrome c oxidase, a probable chemotaxis transducer, a two-component response regulator, and MexH were produced only in mature and late-stage biofilms. Mutations in the genes encoding these proteins did not confer defects in growth, initial attachment, early biofilm formation, or twitching motility but were observed to arrest biofilm development at the stage of cell cluster formation we call the maturation-1 stage. The results indicated that expression of theses genes was required for the progression of biofilms into three-dimensional structures on abiotic surfaces and the completion of the biofilm developmental cycle. Reverse transcription-PCR analysis confirmed the detectable change in expression of the respective genes ccoO, PA4101, and PA4208. We propose a possible mechanism for the role of these biofilm-specific proteins in biofilm formation.


2018 ◽  
Author(s):  
Prasanth Manohar ◽  
Thamaraiselvan Shanthini ◽  
Reethu Ann Philip ◽  
Subramani Ramkumar ◽  
Manali Kale ◽  
...  

AbstractTo evaluate the presence of biofilm-specific antibiotic-resistant genes, PA0756-0757, PA5033 and PA2070 in Pseudomonas aeruginosa isolated from clinical samples in Tamil Nadu. For this cross-sectional study, 24 clinical isolates (included pus, urine, wound, and blood) were collected from two diagnostic centers in Chennai from May 2015 to February 2016. Biofilm formation was assessed using microtiter dish biofilm formation assay and minimal inhibitory concentration (MIC) and minimal bactericidal concentrations (MBC) were determined for planktonic and biofilm cells (MBC assay). Further, PCR amplification of biofilm-specific antibiotic resistance genes PA0756-0757, PA5033 and PA2070 were performed. Biofilm formation was found to be moderate/strong in 16 strains. MBC for planktonic cells showed that 4, 7, 10 and 14 strains were susceptible to gentamicin, ciprofloxacin, meropenem and colistin respectively. In MBC assay for biofilm cells (MBC-B), all the 16 biofilm producing strains were resistant to ciprofloxacin and gentamicin whereas nine and four were resistant to meropenem, and colistin respectively. The biofilm-specific antibiotic-resistant genes PA0756-0757 was found in 10 strains, 6 strains with PA5033 and 9 strains with PA2070 that were found to be resistant phenotypically. This study highlighted the importance of biofilm-specific antibiotic resistance genes PA0756-0757, PA5033, and PA2070 in biofilm-forming P. aeruginosa.


Author(s):  
Hyeon-Ji Hwang ◽  
Xi-Hui Li ◽  
Soo-Kyoung Kim ◽  
Joon-Hee Lee

Pseudomonas aeruginosa is a notorious pathogen with high antibiotic resistance, strong virulence, and ability to cause biofilm-mediated chronic infection. We found that these characteristics change profoundly before and after the time when anthranilate is produced as an “anthranilate peak”.


2022 ◽  
Vol 13 (1) ◽  
pp. 88-92
Author(s):  
M Swapna ◽  
G Sumathi ◽  
M Anitha

Background: Pseudomonas aeruginosa is one of the most prevalent nosocomial pathogens that cause a life-threatening infection. One of the important characteristics of P. aeruginosa is biofilm formation which leads to antibiotic resistance. Aims and Objectives: The aim of the study was to study the antibiotic resistance pattern of P. aeruginosa isolates and correlation with their biofilm-production. Materials and Methods: A total of 87 P. aeruginosa isolates from different clinical specimens were processed and confirmed by conventional microbiological methods as per standard methodology. Antibiotic sensitivity testing was done for all isolates. Biofilm producing isolates were identified by the microtiter plate method (MTPM). Results: Of 87 P. aeruginosa isolates, majority were from pus 33 (38%), followed by urine 26 (30%), sputum 19 (22%), body fluids 7 (8%), and blood 2 (2%). Biofilm producing isolates showed more resistance in comparison to non-biofilm producers. The observed difference between biofilm formation for multidrug resistant and susceptible isolates was found to be statistically significant. Conclusion: MTPM method was an effective test for detection of biofilm formation and was also able to verify biofilm production by P. aeruginosa. This indicated a higher propensity among the clinical isolates of P. aeruginosa to form biofilm and revealed a positive correlation between biofilm formation and antibiotic resistance. This indicates the need for testing of even susceptible isolates for virulence factors such as biofilm production.


Author(s):  
Adithi R. Varadarajan ◽  
Raymond N. Allan ◽  
Jules D. P. Valentin ◽  
Olga E. Castañeda Ocampo ◽  
Vincent Somerville ◽  
...  

AbstractPseudomonas aeruginosa MPAO1 is the parental strain of the widely utilized transposon mutant collection for this important clinical pathogen. Here, we validate a model system to identify genes involved in biofilm growth and antibiotic resistance.Our model employs a genomics-driven workflow to assemble the complete MPAO1 genome, identify unique and conserved genes by comparative genomics with the PAO1 reference strain and missed genes by proteogenomics. Among over 200 unique MPAO1 genes, we identified six general essential genes that were overlooked when mapping public Tn-seq datasets against PAO1, including an antitoxin. Genomic data were integrated with phenotypic data from an experimental workflow using a user-friendly, soft lithography-based microfluidic flow chamber for biofilm growth. Experiments conducted across three laboratories delivered reproducible data on P. aeruginosa biofilms and validated both known and novel genes involved in biofilm growth and antibiotic resistance identified in screens of the mutant collection. Differential protein expression data from planktonic cells versus biofilm confirmed upregulation of candidates known to affect biofilm formation, of structural and secreted proteins of type six secretion systems, and provided proteogenomic evidence for some missed MPAO1 genes. This integrated, broadly applicable model promises to improve the mechanistic understanding of biofilm formation, antimicrobial tolerance and resistance evolution.


Sign in / Sign up

Export Citation Format

Share Document