Galacto- and Fructo-oligosaccharides Utilized for Growth by Cocultures of Bifidobacterial Species Characteristic of the Infant Gut

2020 ◽  
Author(s):  
Ian Sims ◽  
GW Tannock

Copyright © 2020 American Society for Microbiology. Bifidobacterial species are common inhabitants of the gut of human infants during the period when milk is a major component of the diet. Bifidobacterium breve, Bifidobacterium bifidum, Bifidobacterium longum subspecies longum, and B. longum subspecies infantis have been detected frequently in infant feces, but B. longum subsp. infantis may be disadvantaged numerically in the gut of infants in westernized countries. This may be due to the different durations of breast milk feeding in different countries. Supplementation of the infant diet or replacement of breast milk using formula feeds is common in Western countries. Formula milks often contain galacto- and/or fructo-oligosaccharides (GOS and FOS, respectively) as additives to augment the concentration of oligosaccharides in ruminant milks, but the ability of B. longum subsp. infantis to utilize these potential growth substrates when they are in competition with other bifidobacterial species is unknown. We compared the growth and oligosaccharide utilization of GOS and FOS by bifidobacterial species in pure culture and coculture. Short-chain GOS and FOS (degrees of polymerization [DP] 2 and 3) were favored growth substrates for strains of B. bifidum and B. longum subsp. longum, whereas both B. breve and B. longum subsp. infantis had the ability to utilize both short- and longer-chain GOS and FOS (DP 2 to 6). B. breve was nevertheless numerically dominant over B. longum subsp. infantis in cocultures. This was probably related to the slower use of GOS of DP 3 by B. longum subsp. infantis, indicating that the kinetics of substrate utilization is an important ecological factor in the assemblage of gut communities.IMPORTANCE The kinds of bacteria that form the collection of microbes (the microbiota) in the gut of human infants may influence health and well-being. Knowledge of how the composition of the infant diet influences the assemblage of the bacterial collection is therefore important because dietary interventions may offer opportunities to alter the microbiota with the aim of improving health. Bifidobacterium longum subspecies infantis is a well-known bacterial species, but under modern child-rearing conditions it may be disadvantaged in the gut. Modern formula milks often contain particular oligosaccharide additives that are generally considered to support bifidobacterial growth. However, studies of the ability of various bifidobacterial species to grow together in the presence of these oligosaccharides have not been conducted. These kinds of studies are essential for developing concepts of microbial ecology related to the influence of human nutrition on the development of the gut microbiota.

2020 ◽  
Author(s):  
Ian Sims ◽  
GW Tannock

Copyright © 2020 American Society for Microbiology. Bifidobacterial species are common inhabitants of the gut of human infants during the period when milk is a major component of the diet. Bifidobacterium breve, Bifidobacterium bifidum, Bifidobacterium longum subspecies longum, and B. longum subspecies infantis have been detected frequently in infant feces, but B. longum subsp. infantis may be disadvantaged numerically in the gut of infants in westernized countries. This may be due to the different durations of breast milk feeding in different countries. Supplementation of the infant diet or replacement of breast milk using formula feeds is common in Western countries. Formula milks often contain galacto- and/or fructo-oligosaccharides (GOS and FOS, respectively) as additives to augment the concentration of oligosaccharides in ruminant milks, but the ability of B. longum subsp. infantis to utilize these potential growth substrates when they are in competition with other bifidobacterial species is unknown. We compared the growth and oligosaccharide utilization of GOS and FOS by bifidobacterial species in pure culture and coculture. Short-chain GOS and FOS (degrees of polymerization [DP] 2 and 3) were favored growth substrates for strains of B. bifidum and B. longum subsp. longum, whereas both B. breve and B. longum subsp. infantis had the ability to utilize both short- and longer-chain GOS and FOS (DP 2 to 6). B. breve was nevertheless numerically dominant over B. longum subsp. infantis in cocultures. This was probably related to the slower use of GOS of DP 3 by B. longum subsp. infantis, indicating that the kinetics of substrate utilization is an important ecological factor in the assemblage of gut communities.IMPORTANCE The kinds of bacteria that form the collection of microbes (the microbiota) in the gut of human infants may influence health and well-being. Knowledge of how the composition of the infant diet influences the assemblage of the bacterial collection is therefore important because dietary interventions may offer opportunities to alter the microbiota with the aim of improving health. Bifidobacterium longum subspecies infantis is a well-known bacterial species, but under modern child-rearing conditions it may be disadvantaged in the gut. Modern formula milks often contain particular oligosaccharide additives that are generally considered to support bifidobacterial growth. However, studies of the ability of various bifidobacterial species to grow together in the presence of these oligosaccharides have not been conducted. These kinds of studies are essential for developing concepts of microbial ecology related to the influence of human nutrition on the development of the gut microbiota.


2020 ◽  
Vol 86 (11) ◽  
Author(s):  
Ian M. Sims ◽  
Gerald W. Tannock

ABSTRACT Bifidobacterial species are common inhabitants of the gut of human infants during the period when milk is a major component of the diet. Bifidobacterium breve, Bifidobacterium bifidum, Bifidobacterium longum subspecies longum, and B. longum subspecies infantis have been detected frequently in infant feces, but B. longum subsp. infantis may be disadvantaged numerically in the gut of infants in westernized countries. This may be due to the different durations of breast milk feeding in different countries. Supplementation of the infant diet or replacement of breast milk using formula feeds is common in Western countries. Formula milks often contain galacto- and/or fructo-oligosaccharides (GOS and FOS, respectively) as additives to augment the concentration of oligosaccharides in ruminant milks, but the ability of B. longum subsp. infantis to utilize these potential growth substrates when they are in competition with other bifidobacterial species is unknown. We compared the growth and oligosaccharide utilization of GOS and FOS by bifidobacterial species in pure culture and coculture. Short-chain GOS and FOS (degrees of polymerization [DP] 2 and 3) were favored growth substrates for strains of B. bifidum and B. longum subsp. longum, whereas both B. breve and B. longum subsp. infantis had the ability to utilize both short- and longer-chain GOS and FOS (DP 2 to 6). B. breve was nevertheless numerically dominant over B. longum subsp. infantis in cocultures. This was probably related to the slower use of GOS of DP 3 by B. longum subsp. infantis, indicating that the kinetics of substrate utilization is an important ecological factor in the assemblage of gut communities. IMPORTANCE The kinds of bacteria that form the collection of microbes (the microbiota) in the gut of human infants may influence health and well-being. Knowledge of how the composition of the infant diet influences the assemblage of the bacterial collection is therefore important because dietary interventions may offer opportunities to alter the microbiota with the aim of improving health. Bifidobacterium longum subspecies infantis is a well-known bacterial species, but under modern child-rearing conditions it may be disadvantaged in the gut. Modern formula milks often contain particular oligosaccharide additives that are generally considered to support bifidobacterial growth. However, studies of the ability of various bifidobacterial species to grow together in the presence of these oligosaccharides have not been conducted. These kinds of studies are essential for developing concepts of microbial ecology related to the influence of human nutrition on the development of the gut microbiota.


2019 ◽  
Vol 7 (9) ◽  
pp. 340 ◽  
Author(s):  
Takuma Sakurai ◽  
Toshitaka Odamaki ◽  
Jin-zhong Xiao

Recent studies have shown that metabolites produced by microbes can be considered as mediators of host-microbial interactions. In this study, we examined the production of tryptophan metabolites by Bifidobacterium strains found in the gastrointestinal tracts of humans and other animals. Indole-3-lactic acid (ILA) was the only tryptophan metabolite produced in bifidobacteria culture supernatants. No others, including indole-3-propionic acid, indole-3-acetic acid, and indole-3-aldehyde, were produced. Strains of bifidobacterial species commonly isolated from the intestines of human infants, such as Bifidobacterium longum subsp. longum, Bifidobacterium longum subsp. infantis, Bifidobacterium breve, and Bifidobacterium bifidum, produced higher levels of ILA than did strains of other species. These results imply that infant-type bifidobacteria might play a specific role in host–microbial cross-talk by producing ILA in human infants.


2021 ◽  
pp. 1-12
Author(s):  
Y. Sakai ◽  
H. Hamano ◽  
H. Ochi ◽  
F. Abe ◽  
K. Masuda ◽  
...  

The genus Bifidobacterium comprises various bacterial species, and the complement of species within the human intestinal tract differs from individual to individual. The balance of these bifidobacterial species remains poorly understood, although it is known that the abundance of bifidobacteria increases following the ingestion of prebiotics. We previously conducted a randomised, placebo-controlled, double-blind, crossover study of 2 g/day lactulose ingestion for 2 weeks in 60 Japanese women. To study the effect of lactulose ingestion on each bifidobacterial species, here, we measured the abundance of each of the principal bifidobacterial species. After lactulose ingestion, the log cell counts of the Bifidobacterium adolescentis group (8.97±0.08 vs 9.39±0.08, P=0.0019), Bifidobacterium catenulatum group (9.45±0.10 vs 9.65±0.10, P=0.0032) and Bifidobacterium longum group (9.01±0.07 vs 9.29±0.07, P=0.0012) were significantly higher than in the placebo ingestion control group. However, the log cell counts were similar for Bifidobacterium breve (8.12±0.12 vs 8.33±0.12, P=0.20), Bifidobacterium bifidum (9.08±0.12 vs 9.42±0.14, P=0.095) and Bifidobacterium animalis subspecies lactis (8.65±0.53 vs 8.46±0.46, P=0.77). Cluster analysis of the log cell count data at the bifidobacterial species level revealed three distinct clusters, but the combinations and ratios of the constituent bifidobacteria were not affected by lactulose ingestion. Furthermore, principal coordinate analysis of the intestinal microbiota in the lactulose and placebo ingestion groups using Illumina MiSeq showed no significant differences in the intestinal microbiota as a whole. These results suggest that 2 g/day lactulose ingestion for 2 weeks significantly increases the abundance of intestinal bifidobacteria, but does not affect the intestinal microbiota as a whole.


2005 ◽  
Vol 71 (8) ◽  
pp. 4233-4240 ◽  
Author(s):  
Paola Lavermicocca ◽  
Francesca Valerio ◽  
Stella Lisa Lonigro ◽  
Maria De Angelis ◽  
Lorenzo Morelli ◽  
...  

ABSTRACT With the aim of developing new functional foods, a traditional product, the table olive, was used as a vehicle for incorporating probiotic bacterial species. Survival on table olives of Lactobacillus rhamnosus (three strains), Lactobacillus paracasei (two strains), Bifidobacterium bifidum (one strain), and Bifidobacterium longum (one strain) at room temperature was investigated. The results obtained using a selected olive sample demonstrated that bifidobacteria and one strain of L. rhamnosus (Lactobacillus GG) showed a good survival rate, with a recovery of about 106 CFU g−1 after 30 days. The Lactobacillus GG population remained unvaried until the end of the experiment, while a slight decline (to about 105 CFU g−1) was observed for bifidobacteria. High viability, with more than 107 CFU g−1, was observed throughout the 3-month experiment for L. paracasei IMPC2.1. This strain, selected for its potential probiotic characteristics and for its lengthy survival on olives, was used to validate table olives as a carrier for transporting bacterial cells into the human gastrointestinal tract. L. paracasei IMPC2.1 was recovered from fecal samples in four out of five volunteers fed 10 to 15 olives per day carrying about 109 to 1010 viable cells for 10 days.


2018 ◽  
Vol 9 (2) ◽  
pp. 231-238 ◽  
Author(s):  
A. Peirotén ◽  
J.L. Arqués ◽  
M. Medina ◽  
E. Rodríguez-Mínguez

Importance of bifidobacteria as part of the infant intestinal microbiota has been highlighted. Their acquisition is influenced by the mode of birth and the feed regime afterwards, with a special role of the maternal microbiota. The presence of the same shared bifidobacterial strains between breast milk and infant faeces in 14 mother-infant pairs was assessed by means of pulsed-field gel electrophoresis (PFGE) genotyping. Four shared strains of Bifidobacterium breve (2), Bifidobacterium longum subsp. infantis and B. longum subsp. longum were found in breast milk-infant faeces pairs. Two years later, a second survey yielded four shared strains of the species Bifidobacterium adolescentis, Bifidobacterium bifidum, B. longum subsp. longum and Bifidobacterium pseudocatenulatum. Moreover, a B. bifidum strain was found to be shared by the infant faeces of the first study and the mother faeces tested two years later, pointing out a long term persistence. Some of the selected bifidobacterial strains showed probiotic potential due to their survival to gastrointestinal conditions and their ability to form biofilms.


2018 ◽  
Vol 9 (4) ◽  
pp. 675-682 ◽  
Author(s):  
T. Sakurai ◽  
A. Yamada ◽  
N. Hashikura ◽  
T. Odamaki ◽  
J.-Z. Xiao

Some food-derived opioid peptides have been reported to cause diseases, such as gastrointestinal inflammation, celiac disease, and mental disorders. Bifidobacterium is a major member of the dominant human gut microbiota, particularly in the gut of infants. In this study, we evaluated the potential of Bifidobacterium in the degradation of food-derived opioid peptides. All strains tested showed some level of dipeptidyl peptidase activity, which is thought to be involved in the degradation of food-derived opioid peptides. However, this activity was higher in bifidobacterial strains that are commonly found in the intestines of human infants, such as Bifidobacterium longum subsp. longum, B. longum subsp. infantis, Bifidobacterium breve and Bifidobacterium bifidum, than in those of other species, such as Bifidobacterium animalis and Bifidobacterium pseudolongum. In addition, some B. longum subsp. infantis and B. bifidum strains showed degradative activity in food-derived opioid peptides such as human and bovine milk-derived casomorphin-7 and wheat gluten-derived gliadorphin-7. A further screening of B. bifidum strains revealed some bifidobacterial strains that could degrade all three peptides. Our results revealed the potential of Bifidobacterium species in the degradation of food-derived opioid peptides, particularly for species commonly found in the intestine of infants. Selected strains of B. longum subsp. infantis and B. bifidum with high degradative capabilities can be used as probiotic microorganisms to eliminate food-derived opioid peptides and contribute to host health.


2015 ◽  
Vol 113 (3) ◽  
pp. 426-434 ◽  
Author(s):  
Bobbi Langkamp-Henken ◽  
Cassie C. Rowe ◽  
Amanda L. Ford ◽  
Mary C. Christman ◽  
Carmelo Nieves ◽  
...  

Acute psychological stress is positively associated with a cold/flu. The present randomised, double-blind, placebo-controlled study examined the effect of three potentially probiotic bacteria on the proportion of healthy days over a 6-week period in academically stressed undergraduate students (n 581) who received Lactobacillus helveticus R0052, Bifidobacterium longum ssp. infantis R0033, Bifidobacterium bifidum R0071 or placebo. On each day, participants recorded the intensity (scale: 0 = not experiencing to 3 = very intense) for nine cold/flu symptoms, and a sum of symptom intensity >6 was designated as a day of cold/flu. B. bifidum resulted in a greater proportion of healthy days than placebo (P≤ 0·05). The percentage of participants reporting ≥ 1 d of cold/flu during the 6-week intervention period was significantly lower with B. bifidum than with placebo (P< 0·05). There were no effects of B. infantis or L. helveticus compared with placebo on either outcome. A predictive model accounted for influential characteristics and their interactions on daily reporting of cold/flu episodes. The proportion of participants reporting a cold on any given day was lower at weeks 2 and 3 with B. bifidum and B. infantis than with placebo for the average level of stress and the most commonly reported number of hours of sleep. Daily intake of bifidobacteria provides benefit related to cold/flu outcomes during acute stress.


2013 ◽  
Vol 23 (56) ◽  
pp. 339-348
Author(s):  
Danila Secolim Coser ◽  
Claudia Maria Simoes Martinez ◽  
Renata Christian de Oliveira Pamplin

This study’s objective was to verify potential relationships among personal well-being, parental practices, and interactions between parents and preschool children reported by working fathers and mothers ( n = 120, 60 couples) from a city in the interior of São Paulo, Brazil. Data were collected using the Questionnaire on family and professional lives. Three scales were selected for data analysis: well-being; interaction between parents and children; and family life. Statistical tests (One-Way ANOVA and Pearson’s correlation coefficient) showed negative correlations between child-rearing practices and health problems reported by parents. Positive correlations were also found between reported parental interactions and child-rearing practices. Parental practices and interactions between parents and children varied according to the number of children (one or two).


Sign in / Sign up

Export Citation Format

Share Document