The effects of carbohydrate structure on the composition and functionality of the human gut microbiota

2020 ◽  
Author(s):  
L Payling ◽  
K Fraser ◽  
SM Loveday ◽  
Ian Sims ◽  
N Roy ◽  
...  

© 2020 Elsevier Ltd Background: Human health depends on a population of microorganisms that inhabit the gut and contribute to homeostasis of the host, including nutrition, immunity and metabolism. Many of the organisms are interactive and mutually dependent, where the end-products for one organism become the fuel for another through substrate and metabolic cross-feeding. To optimise the gut microbiota using diet, the composition and functionality of the gut microbiota, including these interacting networks, must be understood. Microbial composition and functionality is affected by the structure of the energy input, which is primarily dietary fibre for the gut microbiota. The structure of dietary fibre has been reviewed by carbohydrate chemists, but knowledge of how dietary fibre structure affects the gut microbiota is limited. Scope and approach: The hierarchical structures of dietary fibre are reviewed, encompassing macrostructure, mesostructure and molecular structure, and how they are affected by food processing and digestion. These factors are considered in relation to their affects on microbial composition and functionality, to provide insight on the interactions between diet, the microbiota, and human health. Key findings and conclusions: Food processing and digestion affect food structure, primarily through the removal of some soluble fractions and increased solubilisation of insoluble fractions. The provision of insoluble carbohydrates to the colon appears important for the sustenance of ‘keystone’ species that play a crucial role in stabilising the gut community. Further work is needed at the microbial strain level to understand the impact of increasing fibre solubility. This should be done in studies using well-characterised carbohydrates that consider the impact of food processing and digestion.

2020 ◽  
Author(s):  
L Payling ◽  
K Fraser ◽  
SM Loveday ◽  
Ian Sims ◽  
N Roy ◽  
...  

© 2020 Elsevier Ltd Background: Human health depends on a population of microorganisms that inhabit the gut and contribute to homeostasis of the host, including nutrition, immunity and metabolism. Many of the organisms are interactive and mutually dependent, where the end-products for one organism become the fuel for another through substrate and metabolic cross-feeding. To optimise the gut microbiota using diet, the composition and functionality of the gut microbiota, including these interacting networks, must be understood. Microbial composition and functionality is affected by the structure of the energy input, which is primarily dietary fibre for the gut microbiota. The structure of dietary fibre has been reviewed by carbohydrate chemists, but knowledge of how dietary fibre structure affects the gut microbiota is limited. Scope and approach: The hierarchical structures of dietary fibre are reviewed, encompassing macrostructure, mesostructure and molecular structure, and how they are affected by food processing and digestion. These factors are considered in relation to their affects on microbial composition and functionality, to provide insight on the interactions between diet, the microbiota, and human health. Key findings and conclusions: Food processing and digestion affect food structure, primarily through the removal of some soluble fractions and increased solubilisation of insoluble fractions. The provision of insoluble carbohydrates to the colon appears important for the sustenance of ‘keystone’ species that play a crucial role in stabilising the gut community. Further work is needed at the microbial strain level to understand the impact of increasing fibre solubility. This should be done in studies using well-characterised carbohydrates that consider the impact of food processing and digestion.


2019 ◽  
Vol 10 (1) ◽  
pp. 221-238 ◽  
Author(s):  
Francisco A. Tomás-Barberán ◽  
Juan C. Espín

The two-way interaction of food (poly)phenols with the human gut microbiota has been studied throughout the past ten years. Research has shown that this interaction can be relevant to explain the health effects of these phytochemicals. The effect of the food matrix and food processing on this interaction has only been partially studied. In this article, the studies within this field have been critically reviewed, with a special focus on the following groups of phenolic metabolites: citrus flavanones, pomegranate ellagitannins, and cocoa proanthocyanidins. The available research shows that both the food matrix and food processing can be relevant factors for gut microbiota reshaping to reach a healthier microbial ecology and for the conversion of polyphenols to bioactive and bioavailable metabolites. There are, however, some research gaps that indicate a more comprehensive research approach is needed to reach valid conclusions regarding the gut microbiota–mediated effects of polyphenols on human health.


Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 180
Author(s):  
Negash Kabtimer Bereded ◽  
Getachew Beneberu Abebe ◽  
Solomon Workneh Fanta ◽  
Manuel Curto ◽  
Herwig Waidbacher ◽  
...  

The gut microbiota of fishes is known to play an essential role in diverse aspects of host biology. The gut microbiota of fish is affected by various environmental parameters, including temperature changes, salinity and diet. Studies of effect of environment on gut microbiota enables to have a further understanding of what comprises a healthy microbiota under different environmental conditions. However, there is insufficient understanding regarding the effects of sampling season and catching site (wild and aquaculture) on the gut microbiota of Nile tilapia. This study characterised gut microbial composition and diversity from samples collected from Lake Tana and the Bahir Dar aquaculture facility centre using 16S rDNA Illumina MiSeq platform sequencing. Firmicutes and Fusobacteria were the most dominant phyla in the Lake Tana samples, while Proteobacteria was the most dominant in the aquaculture samples. The results of differential abundance testing clearly indicated significant differences for Firmicutes, Fusobacteria, Bacteroidetes and Cyanobacteria across sampling months. However, Proteobacteria, Chloroflexi, Fusobacteria and Cyanobacteria were significantly enriched in the comparison of samples from the Lake Tana and aquaculture centre. Significant differences were observed in microbial diversity across sampling months and between wild and captive Nile tilapia. The alpha diversity clearly showed that samples from the aquaculture centre (captive) had a higher diversity than the wild Nile tilapia samples from Lake Tana. The core gut microbiota of all samples of Nile tilapia used in our study comprised Firmicutes, Proteobacteria and Fusobacteria. This study clearly showed the impact of sampling season and catching site (wild and aquaculture) on the diversity and composition of bacterial communities associated with the gut of Nile tilapia. Overall, this is the first study on the effects of sampling season and catching site on the gut microbiota of Nile tilapia in Ethiopia. Future work is recommended to precisely explain the causes of these changes using large representative samples of Nile tilapia from different lakes and aquaculture farms.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Liang Xie ◽  
Rikeish R Muralitharan ◽  
Evany Dinakis ◽  
Michael E Nakai ◽  
Hamdi Jama ◽  
...  

High fibre (HF) diet protects against hypertension via the production of acidic metabolites, e.g. short-chain fatty acids, by the gut microbiota. While these metabolites have a direct role in blood pressure (BP) regulation, their acidic nature may activate proton-sensing receptors, which have anti-inflammatory functions. G-protein coupled receptor 65 (GPR65) is a proton-sensing receptor activated around pH 6.5 and is critical for gut homeostasis. We hypothesized that GPR65 is involved in the cardiovascular protection by dietary fibre. We first measured cecal pH of C57BL/6 (WT) mice after a 7-day dietary intervention with either HF or low fibre (LF) diets (n=6/group). HF diet lowered cecal pH to a level where GPR65 is highly activated, compared to the LF diet (6.5±0.1 vs 7.6±0.1, P<0.001). The impact of pH and GPR65 on T cell production of IFNγ, a pro-inflammatory cytokine, in vitro was measured by flow cytometry. Acidic pH inhibited the production of IFNγ by CD8+ T cells (pH 6.5 vs pH 7.5, P<0.001). Cells lacking GPR65 had higher IFNγ at both pH (P<0.001). To determine if GPR65 is involved in BP regulation by dietary fibre, WT and GPR65 knockout ( Gpr65 -/- ) mice were implanted with minipumps containing angiotensin II (Ang II, 0.5mg/kg/day, 28 days, n=8-9/group) and fed with HF diet. BP, cardiorenal function and immune cell infiltration were measured. Gpr65 -/- mice had higher BP compared to WT mice after 2 weeks (mean arterial pressure ± SEM; WT 79.8±2.4 vs Gpr65 -/- 95.8±1.6mmHg, P<0.001) and 4 weeks of Ang II infusion (WT 92.3±2.4 vs Gpr65 -/- 99.5±1.3, P=0.062). Gpr65 -/- mice developed cardiac (P=0.035) and renal (P=0.025) hypertrophy, and impaired renal natriuretic (P=0.054) and diuretic (P=0.056) function compared to WT mice. This was accompanied by higher macrophage (P=0.009) and γδ T cell (P=0.014) infiltration in the kidneys. In conclusion, our data suggest that pH-sensing by GPR65 contributes to the protection against hypertension by dietary fibre via inflammatory mechanisms. This is a novel mechanism that contributes to BP regulation via the gut microbiota.


Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1590 ◽  
Author(s):  
Nina Hansen ◽  
Anette Sams

This review provides evidence that not only the content of nutrients but indeed the structural organization of nutrients is a major determinant of human health. The gut microbiota provides nutrients for the host by digesting food structures otherwise indigestible by human enzymes, thereby simultaneously harvesting energy and delivering nutrients and metabolites for the nutritional and biological benefit of the host. Microbiota-derived nutrients, metabolites, and antigens promote the development and function of the host immune system both directly by activating cells of the adaptive and innate immune system and indirectly by sustaining release of monosaccharides, stimulating intestinal receptors and secreting gut hormones. Multiple indirect microbiota-dependent biological responses contribute to glucose homeostasis, which prevents hyperglycemia-induced inflammatory conditions. The composition and function of the gut microbiota vary between individuals and whereas dietary habits influence the gut microbiota, the gut microbiota influences both the nutritional and biological homeostasis of the host. A healthy gut microbiota requires the presence of beneficial microbiotic species as well as vital food structures to ensure appropriate feeding of the microbiota. This review focuses on the impact of plant-based food structures, the “fiber-encapsulated nutrient formulation”, and on the direct and indirect mechanisms by which the gut microbiota participate in host immune function.


2020 ◽  
Vol 8 (2) ◽  
pp. 197
Author(s):  
Shomeek Chowdhury ◽  
Stephen S. Fong

The impact of microorganisms on human health has long been acknowledged and studied, but recent advances in research methodologies have enabled a new systems-level perspective on the collections of microorganisms associated with humans, the human microbiome. Large-scale collaborative efforts such as the NIH Human Microbiome Project have sought to kick-start research on the human microbiome by providing foundational information on microbial composition based upon specific sites across the human body. Here, we focus on the four main anatomical sites of the human microbiome: gut, oral, skin, and vaginal, and provide information on site-specific background, experimental data, and computational modeling. Each of the site-specific microbiomes has unique organisms and phenomena associated with them; there are also high-level commonalities. By providing an overview of different human microbiome sites, we hope to provide a perspective where detailed, site-specific research is needed to understand causal phenomena that impact human health, but there is equally a need for more generalized methodology improvements that would benefit all human microbiome research.


Biomedicines ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 469
Author(s):  
Shyamchand Mayengbam ◽  
Faye Chleilat ◽  
Raylene A. Reimer

Vitamin B6 plays a crucial role as a cofactor in various enzymatic reactions but bacteria-produced vitamin B6 is not sufficient to meet host requirements. Our objective was to assess the impact of diet-derived vitamin B6 on gut microbiota and host serum metabolomics. Sprague–Dawley rats (n = 47) were fed a control, low B6 (LB6) or high B6 (HB6) diet for six weeks. Serum and cecal samples were collected for biochemical, metabolomics and gut microbiota profiling. There was a significant sex effect for gut microbiota and several metabolic markers. Bodyweight and percent body fat were significantly reduced in LB6 compared to control and HB6 rats. Microbial beta-diversity differed significantly between LB6 and the control and HB6 rats in both sexes. Lachnospiraceae_NK4A136_group and Bacteroides were the primary taxa driving the difference between LB6 and control. There was a significant separation of cecal and serum metabolites of LB6 compared to control and HB6 rats. In the cecum, arginine biosynthesis was impaired, while vitamin B6 metabolism, lysine degradation and nicotinate and nicotinamide metabolism were impaired in serum metabolite profiles. Cecal propionate and butyrate were significantly reduced in LB6 rats irrespective of sex. Host vitamin B6 deficiency but not excess significantly alters gut microbial composition and its metabolites.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 293-294
Author(s):  
Camila S Marcolla ◽  
Benjamin Willing

Abstract This study aimed to characterize poultry microbiota composition in commercial farms using 16S rRNA sequencing. Animals raised in sanitized environments have lower survival rates when facing pathogenic challenges compared to animals naturally exposed to commensal organisms. We hypothesized that intensive rearing practices inadvertently impair chicken exposure to microbes and the establishment of a balanced gut microbiota. We compared gut microbiota composition of broilers (n = 78) and layers (n = 20) from different systems, including commercial intensive farms with and without in-feed antibiotics, organic free-range farms, backyard-raised chickens and chickens in an experimental farm. Microbial community composition of conventionally raised broilers was significantly different from antibiotic-free broilers (P = 0.012), from broilers raised outdoors (P = 0.048) and in an experimental farm (P = 0.006) (Fig1). Significant community composition differences were observed between antibiotic-fed and antibiotic-free chickens (Fig2). Antibiotic-free chickens presented higher alpha-diversity, higher relative abundance of Deferribacteres, Fusobacteria, Bacteroidetes and Actinobacteria, and lower relative abundance of Firmicutes, Clostridiales and Enterobacteriales than antibiotic-fed chickens (P &lt; 0.001) (Fig3). Microbial community composition significantly changed as birds aged. In experimental farm, microbial community composition was significant different for 7, 21 and 35 day old broilers (P &lt; 0.001), and alpha diversity increased from 7 to 21d (P &lt; 0.024), but not from 21 to 35d; whereas, in organic systems, increases in alpha-diversity were observed from 7d to 21d, and from 21d to 35d (P &lt; 0.05). Broilers and layers raised together showed no differences in microbiota composition and alpha diversity (P &gt; 0.8). It is concluded that production practices consistently impact microbial composition, and that antibiotics significantly reduces microbial diversity. We are now exploring the impact of differential colonization in a controlled setting, to determine the impact of the microbes associated with extensively raised chickens. This study will support future research and the development of methods to isolate and introduce beneficial microbes to commercial systems.


2020 ◽  
Vol 8 (3) ◽  
pp. 206-214
Author(s):  
Xiaoli Zhang ◽  
Zui Pan

Abstract Gastric and esophageal cancers are multifactorial and multistage-involved malignancy. While the impact of gut microbiota on overall human health and diseases has been well documented, the influence of gastric and esophageal microbiota on gastric and esophageal cancers remains unclear. This review will discuss the reported alteration in the composition of gastric and esophageal microbiota in normal and disease conditions, and the potential role of dysbiosis in carcinogenesis and tumorigenesis. This review will also discuss how dysbiosis stimulates local and systemic immunity, which may impact on the immunotherapy for cancer.


Nutrition ◽  
2018 ◽  
Vol 51-52 ◽  
pp. 80-85 ◽  
Author(s):  
Na Zhang ◽  
Zhongjie Ju ◽  
Tao Zuo

Sign in / Sign up

Export Citation Format

Share Document