scholarly journals Dietary Vitamin B6 Deficiency Impairs Gut Microbiota and Host and Microbial Metabolites in Rats

Biomedicines ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 469
Author(s):  
Shyamchand Mayengbam ◽  
Faye Chleilat ◽  
Raylene A. Reimer

Vitamin B6 plays a crucial role as a cofactor in various enzymatic reactions but bacteria-produced vitamin B6 is not sufficient to meet host requirements. Our objective was to assess the impact of diet-derived vitamin B6 on gut microbiota and host serum metabolomics. Sprague–Dawley rats (n = 47) were fed a control, low B6 (LB6) or high B6 (HB6) diet for six weeks. Serum and cecal samples were collected for biochemical, metabolomics and gut microbiota profiling. There was a significant sex effect for gut microbiota and several metabolic markers. Bodyweight and percent body fat were significantly reduced in LB6 compared to control and HB6 rats. Microbial beta-diversity differed significantly between LB6 and the control and HB6 rats in both sexes. Lachnospiraceae_NK4A136_group and Bacteroides were the primary taxa driving the difference between LB6 and control. There was a significant separation of cecal and serum metabolites of LB6 compared to control and HB6 rats. In the cecum, arginine biosynthesis was impaired, while vitamin B6 metabolism, lysine degradation and nicotinate and nicotinamide metabolism were impaired in serum metabolite profiles. Cecal propionate and butyrate were significantly reduced in LB6 rats irrespective of sex. Host vitamin B6 deficiency but not excess significantly alters gut microbial composition and its metabolites.

2019 ◽  
Vol 8 (1) ◽  
pp. 79 ◽  
Author(s):  
Won Yoon ◽  
Han-Na Kim ◽  
Eunkyo Park ◽  
Seungho Ryu ◽  
Yoosoo Chang ◽  
...  

Cholecystectomy alters the bile flow into the intestine and the enterohepatic circulation of the bile acids; this may affect the gut microbiota. We assessed the gut microbiota composition of patients who had undergone cholecystectomy and compared with those who had not. From a cohort of 1463 adult participants who underwent comprehensive health screening examinations, 27 subjects who had undergone cholecystectomy (cholecystectomy group) and 81 age- and sex-matched subjects who had not (control group) were selected. Clinical parameters were collected and compared. Microbial composition was determined by 16S rRNA gene sequencing of DNA extracted from fecal samples. We evaluated differences in the overall microbial composition and in the abundance of taxa. The two groups were comparable with respect to clinical characteristics and laboratory results. The actual number of taxa observed in a sample (observed features) was significantly lower in the cholecystectomy group than in the control group (p = 0.042). The beta diversity of Jaccard distance index was significantly different between the two groups (p = 0.027). Blautia obeum and Veillonella parvula were more abundant in the cholecystectomy group. The difference in the diversity of the gut microbiota between the cholecystectomy and control groups was subtle. However, B. obeum and V. parvula, which have azoreductase activity, were more abundant in the cholecystectomy group. The impact of such changes in the gut microbiota on health remains to be determined.


Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 180
Author(s):  
Negash Kabtimer Bereded ◽  
Getachew Beneberu Abebe ◽  
Solomon Workneh Fanta ◽  
Manuel Curto ◽  
Herwig Waidbacher ◽  
...  

The gut microbiota of fishes is known to play an essential role in diverse aspects of host biology. The gut microbiota of fish is affected by various environmental parameters, including temperature changes, salinity and diet. Studies of effect of environment on gut microbiota enables to have a further understanding of what comprises a healthy microbiota under different environmental conditions. However, there is insufficient understanding regarding the effects of sampling season and catching site (wild and aquaculture) on the gut microbiota of Nile tilapia. This study characterised gut microbial composition and diversity from samples collected from Lake Tana and the Bahir Dar aquaculture facility centre using 16S rDNA Illumina MiSeq platform sequencing. Firmicutes and Fusobacteria were the most dominant phyla in the Lake Tana samples, while Proteobacteria was the most dominant in the aquaculture samples. The results of differential abundance testing clearly indicated significant differences for Firmicutes, Fusobacteria, Bacteroidetes and Cyanobacteria across sampling months. However, Proteobacteria, Chloroflexi, Fusobacteria and Cyanobacteria were significantly enriched in the comparison of samples from the Lake Tana and aquaculture centre. Significant differences were observed in microbial diversity across sampling months and between wild and captive Nile tilapia. The alpha diversity clearly showed that samples from the aquaculture centre (captive) had a higher diversity than the wild Nile tilapia samples from Lake Tana. The core gut microbiota of all samples of Nile tilapia used in our study comprised Firmicutes, Proteobacteria and Fusobacteria. This study clearly showed the impact of sampling season and catching site (wild and aquaculture) on the diversity and composition of bacterial communities associated with the gut of Nile tilapia. Overall, this is the first study on the effects of sampling season and catching site on the gut microbiota of Nile tilapia in Ethiopia. Future work is recommended to precisely explain the causes of these changes using large representative samples of Nile tilapia from different lakes and aquaculture farms.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 293-294
Author(s):  
Camila S Marcolla ◽  
Benjamin Willing

Abstract This study aimed to characterize poultry microbiota composition in commercial farms using 16S rRNA sequencing. Animals raised in sanitized environments have lower survival rates when facing pathogenic challenges compared to animals naturally exposed to commensal organisms. We hypothesized that intensive rearing practices inadvertently impair chicken exposure to microbes and the establishment of a balanced gut microbiota. We compared gut microbiota composition of broilers (n = 78) and layers (n = 20) from different systems, including commercial intensive farms with and without in-feed antibiotics, organic free-range farms, backyard-raised chickens and chickens in an experimental farm. Microbial community composition of conventionally raised broilers was significantly different from antibiotic-free broilers (P = 0.012), from broilers raised outdoors (P = 0.048) and in an experimental farm (P = 0.006) (Fig1). Significant community composition differences were observed between antibiotic-fed and antibiotic-free chickens (Fig2). Antibiotic-free chickens presented higher alpha-diversity, higher relative abundance of Deferribacteres, Fusobacteria, Bacteroidetes and Actinobacteria, and lower relative abundance of Firmicutes, Clostridiales and Enterobacteriales than antibiotic-fed chickens (P < 0.001) (Fig3). Microbial community composition significantly changed as birds aged. In experimental farm, microbial community composition was significant different for 7, 21 and 35 day old broilers (P < 0.001), and alpha diversity increased from 7 to 21d (P < 0.024), but not from 21 to 35d; whereas, in organic systems, increases in alpha-diversity were observed from 7d to 21d, and from 21d to 35d (P < 0.05). Broilers and layers raised together showed no differences in microbiota composition and alpha diversity (P > 0.8). It is concluded that production practices consistently impact microbial composition, and that antibiotics significantly reduces microbial diversity. We are now exploring the impact of differential colonization in a controlled setting, to determine the impact of the microbes associated with extensively raised chickens. This study will support future research and the development of methods to isolate and introduce beneficial microbes to commercial systems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ashish Kumar Srivastava ◽  
Vishwajeet Rohil ◽  
Brij Bhushan ◽  
Malleswara Rao Eslavath ◽  
Harshita Gupta ◽  
...  

AbstractShip voyage to Antarctica is a stressful journey for expedition members. The response of human gut microbiota to ship voyage and a feasible approach to maintain gut health, is still unexplored. The present findings describe a 24-day long longitudinal study involving 19 members from 38th Indian Antarctic Expedition, to investigate the impact of ship voyage and effect of probiotic intervention on gut microbiota. Fecal samples collected on day 0 as baseline and at the end of ship voyage (day 24), were analyzed using whole genome shotgun sequencing. Probiotic intervention reduced the sea sickness by 10% compared to 44% in placebo group. The gut microbiome in placebo group members on day 0 and day 24, indicated significant alteration compared to a marginal change in the microbial composition in probiotic group. Functional analysis revealed significant alterations in carbohydrate and amino acid metabolism. Carbohydrate-active enzymes analysis represented functional genes involved in glycoside hydrolases, glycosyltransferases and carbohydrate binding modules, for maintaining gut microbiome homeostasis. Suggesting thereby the possible mechanism of probiotic in stabilizing and restoring gut microflora during stressful ship journey. The present study is first of its kind, providing a feasible approach for protecting gut health during Antarctic expedition involving ship voyage.


Author(s):  
Hongxia Li ◽  
Jianwei Chen ◽  
Xiaojing Ren ◽  
Chuanli Yang ◽  
Shuai Liu ◽  
...  

BackgroundChronic constipation is one of the most prevalent functional gastrointestinal disorders, yet its etiology is multifactorial, and the pathophysiological mechanism is still unclear. Previous studies have shown that the gut microbiota of constipated patients differs from healthy controls; however, many discrepancies exist in the findings, and no clear link has been confirmed between chronic constipation and changes in the gut microbiota. Growing evidence indicates that age, gender, and hormone levels can affect the composition of gut microbiota. The aim of this study is to examine the overall changes in gut microbiota within a specific sub-population of patients, namely, constipated women of reproductive age.MethodsWe carried out a cross-sectional study comparing the fecal microbial composition of 30 healthy women and 29 constipated women using 16S rRNA gene sequencing. Only women of reproductive age were recruited to reduce the effects of age, gender, and hormone levels on the microbiome, and to prevent conflating the impact of these factors with the effects of constipation.ResultsThere were obvious differences in the gut microbiota in constipated women of reproductive age compared with the healthy controls, manifesting mainly as a significant increase in the abundance of Bacteroides (p < 0.05) and a significant decrease in the abundance of Proteobacteria (p < 0.01). The overall composition of the gut microbiota in each group was different, which was reflected in the ratios of Firmicutes to Bacteroidetes (F/B), which was 1.52 in the constipated group vs. 2.21 in the healthy group. Additionally, there was a significant decrease in butyrate-producing bacteria, like Roseburia and Fusicatenibacter (p < 0.01).ConclusionThe overall composition of the gut microbiota changed in constipated women of reproductive age, characterized by a loss in Proteobacteria and an increase in Bacteroidetes. Furthermore, the abundance of some butyrate-producing bacteria also reduced. These changes may reflect the unique interactions between host and some bacteria, or some bacterial metabolic products, which may be important targets for future studies to explore the pathogenesis of constipation.


2021 ◽  
Author(s):  
Lisa Miclotte ◽  
Ellen De Paepe ◽  
Qiqiong Li ◽  
Andreja Rajkovic ◽  
John Van Camp ◽  
...  

In the context of the potential health hazards related to food processing, dietary emulsifiers have been shown to alter the structure and function of the gut microbial community, both in vivo and in vitro. In mouse models, these emulsifier exposed gut microbiota were shown to contribute to gut inflammation. Several knowledge gaps remain to be addressed though. As such, the impact from a longer timeframe of exposure on the gut microbiota is not known and interindividual variability in microbiome response needs to be measured. To answer these research questions, in this study the faecal microbiota from two individuals, previously selected for high and low emulsifier sensitivity, were exposed to two concentrations of soy lecithin during a 7 day treatment phase in the dynamic mucosal simulator of the human intestinal microbial ecosystem (M-SHIME). The results showed mild effects from soy lecithin on the composition and functionality of these microbial communities, which depended on the original microbial composition. The effects also mostly levelled off after 3 days of exposure. The emulsifier sensitivity for which the microbiota were selected, was preserved. Some potentially concerning effects were also registered: butyrate levels, positively correlating with Faecalibacterium abundance, were lowered by soy lecithin. Also the abundance of the beneficial Bifidobacterium genus was lowered, while the abundance of the notorious unclassified Enterobacteriaceae was increased. Within the family of the unclassified Lachnospiraceae, several genera were either suppressed or stimulated. The effects that these microbial alterations would have on a living host is not yet certain, especially given the fact that large fractions of soy lecithins constituents can be absorbed. Nevertheless, choline and phosphatidylcholine, both primary and absorbable constituents of soy lecithin, have recently been linked to cardiovascular disease via the generation of TMA by the gut microbiota. Further studies that validate our findings and link them to potential health outcomes are thus justified.


2019 ◽  
Vol 11 ◽  
pp. 1759720X1984463 ◽  
Author(s):  
Rahul Bodkhe ◽  
Baskar Balakrishnan ◽  
Veena Taneja

Rheumatoid arthritis (RA) is an autoimmune disorder with multifactorial etiology; both genetic and environmental factors are known to be involved in pathogenesis. Treatment with disease-modifying antirheumatic drugs (DMARDs) plays an essential role in controlling disease progression and symptoms. DMARDs have immunomodulatory properties and suppress immune response by interfering in various pro-inflammatory pathways. Recent evidence has shown that the gut microbiota directly and indirectly modulates the host immune system. RA has been associated with dysbiosis of the gut microbiota. Patients with RA treated with DMARDs show partial restoration of eubiotic gut microbiome. Hence, it is essential to understand the impact of DMARDs on the microbial composition and its consequent influences on the host immune system to identify novel therapies for RA. In this review, we discuss the importance of antirheumatic-drug-induced host microbiota modulations and possible probiotics that can generate eubiosis.


Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1199 ◽  
Author(s):  
Silke Crommen ◽  
Alma Mattes ◽  
Marie-Christine Simon

Bariatric surgery leads to sustained weight loss and the resolution of obesity-related comorbidities. Recent studies have suggested that changes in gut microbiota are associated with the weight loss induced by bariatric surgery. Several studies have observed major changes in the microbial composition following gastric bypass surgery. However, there are inconsistencies between the reported alterations in microbial compositions in different studies. Furthermore, it is well established that diet is an important factor shaping the composition and function of intestinal microbiota. However, most studies on gastric bypass have not assessed the impact of dietary intake on the microbiome composition in general, let alone the impact of restrictive diets prior to bariatric surgery, which are recommended for reducing liver fat content and size. Thus, the relative impact of bariatric surgery on weight loss and gut microbiota remains unclear. Therefore, this review aims to provide a deeper understanding of the current knowledge of the changes in intestinal microbiota induced by bariatric surgery considering pre-surgical nutritional changes.


2019 ◽  
Vol 20 (3) ◽  
pp. 501 ◽  
Author(s):  
Rossella Cianci ◽  
Laura Franza ◽  
Giovanni Schinzari ◽  
Ernesto Rossi ◽  
Gianluca Ianiro ◽  
...  

The gut microbiota is central to the pathogenesis of several inflammatory and autoimmune diseases. While multiple mechanisms are involved, the immune system clearly plays a special role. Indeed, the breakdown of the physiological balance in gut microbial composition leads to dysbiosis, which is then able to enhance inflammation and to influence gene expression. At the same time, there is an intense cross-talk between the microbiota and the immunological niche in the intestinal mucosa. These interactions may pave the way to the development, growth and spreading of cancer, especially in the gastro-intestinal system. Here, we review the changes in microbiota composition, how they relate to the immunological imbalance, influencing the onset of different types of cancer and the impact of these mechanisms on the efficacy of traditional and upcoming cancer treatments.


Sign in / Sign up

Export Citation Format

Share Document