scholarly journals Food selection by the northern yellow-cheeked crested gibbons (Nomascus annamensis), northern Cambodia

2021 ◽  
Author(s):  
◽  
Naven Hon

<p>Tropical regions have extremely high plant diversity, which in turn supports a high diversity of animals. However, not all plant species are selected by animals as food sources, with some herbivores selecting only specific plants as food as not all plants have the same nutrient make up. Animals must select which food items to include in their diets, as the amount and type of nutrients in their diet can affect lifespan, health, fitness, and reproduction.  Gibbon populations have declined significantly in recent years due to habitat destruction and hunting. Northern yellow-cheeked crested gibbon (Nomascus annamensis) is a newly described species, and has a limited distribution restricted to Cambodia, Laos and Vietnam. The northern yellow-cheeked crested gibbons play an important role in seed dispersal, yet little is currently known about this species, including its food selection and nutritional needs. However, data on food selection and nutritional composition of selected food items would greatly inform the conservation of both wild and captive populations of this species.  This study aims to quantify food selection by the northern yellow-cheeked crested gibbons by investigating the main plant species consumed and the influence of the availability of food items on their selection. The study also explores the nutritional composition of food items consumed by this gibbon species and identifying key plant species that provide these significant nutrients.  A habituated group of the northern yellow-cheeked crested gibbons with five members located in northern Cambodia was studied for 12 weeks during the dry season, and focal animal sampling was used to observe individual feeding behaviours. Four main activity categories were recorded including resting, feeding, travelling and socializing. Phenological data was recorded from transect lines, and plant densities from 20 vegetation plots inside the home range of this group of gibbons were also measured. Seventy-four plant samples from 20 tree and liana species that were consumed by this group of gibbons were collected for nutritional analyses. These samples were initially dried in sunlight, and then oven dried before levels of protein, total non-structural carbohydrates, lipids, fibres and condensed tannins were measured at the Nutritional Ecology Lab at Hunter College of the City University of New York, New York.  The northern yellow-cheeked crested gibbon individuals spent most of the time resting, followed by feeding, travelling and socializing. Their main diet was fruit, supplemented with young leaves, flowers, mature leaves, and occasionally insects. Individuals selected food from 37 plant species, but predominately fed on just 16 of these species. The three most-consumed species were fruit from Ilex umbellulata (tree), Ficus. sp (liana), and young leaves from Lithocarpus elegans (tree). There was a significant relationship between feeding time and the availability of flowers, indicating that flowers were actively selected for when present. However, there was no significant relationship between feeding time and the availability of fruit or young leaves. Only a small number of plants bore fruit, with very low densities in the home range of this gibbon study group, but these plants produced a large abundance of fruit. These findings clearly indicate that fruit is the main diet for northern yellow-cheeked crested gibbons in the dry season, with young leaves, flowers, mature leaves and insects acting as secondary food sources. The northern yellow-cheeked crested gibbons selected only a small number of specific plants in their territory for food sources, indicating that any selective logging targeting these plant species would reduce food availability, and restrict the diet of these animals.  Fruits consumed by the northern yellow-cheeked crested gibbons were rich in carbohydrates and lipids, while young leaves were richest concentration of protein. Mature leaves had a high moisture content, whereas flowers contained condensed tannins more often than other plant tissues. All plant tissues consumed had similar amount of fibres. Generally, the food items consumed had higher concentrations of carbohydrate than protein or lipids. The overall diet of this group of gibbons was low in lipids. These results indicate that northern yellow-cheeked crested gibbon consumed food items with high concentrations of carbohydrate, and only selected a few food sources with high level of protein.  Overall, these findings have contributed important knowledge that can be used for long-term conservation of this gibbon species. There are a small number of key food species in the home range which need special protection. The northern yellow-cheeked crested gibbons consumed food items from different plant species, and as a consequence, all plant species selected play an important role for nutritional requirements by this gibbon species. When considering feeding requirement by the northern yellow-cheeked crested gibbons for captive breeding programs, diets should include fruit, which is rich in carbohydrates, and young leaves, which have high levels of protein.</p>

2021 ◽  
Author(s):  
◽  
Naven Hon

<p>Tropical regions have extremely high plant diversity, which in turn supports a high diversity of animals. However, not all plant species are selected by animals as food sources, with some herbivores selecting only specific plants as food as not all plants have the same nutrient make up. Animals must select which food items to include in their diets, as the amount and type of nutrients in their diet can affect lifespan, health, fitness, and reproduction.  Gibbon populations have declined significantly in recent years due to habitat destruction and hunting. Northern yellow-cheeked crested gibbon (Nomascus annamensis) is a newly described species, and has a limited distribution restricted to Cambodia, Laos and Vietnam. The northern yellow-cheeked crested gibbons play an important role in seed dispersal, yet little is currently known about this species, including its food selection and nutritional needs. However, data on food selection and nutritional composition of selected food items would greatly inform the conservation of both wild and captive populations of this species.  This study aims to quantify food selection by the northern yellow-cheeked crested gibbons by investigating the main plant species consumed and the influence of the availability of food items on their selection. The study also explores the nutritional composition of food items consumed by this gibbon species and identifying key plant species that provide these significant nutrients.  A habituated group of the northern yellow-cheeked crested gibbons with five members located in northern Cambodia was studied for 12 weeks during the dry season, and focal animal sampling was used to observe individual feeding behaviours. Four main activity categories were recorded including resting, feeding, travelling and socializing. Phenological data was recorded from transect lines, and plant densities from 20 vegetation plots inside the home range of this group of gibbons were also measured. Seventy-four plant samples from 20 tree and liana species that were consumed by this group of gibbons were collected for nutritional analyses. These samples were initially dried in sunlight, and then oven dried before levels of protein, total non-structural carbohydrates, lipids, fibres and condensed tannins were measured at the Nutritional Ecology Lab at Hunter College of the City University of New York, New York.  The northern yellow-cheeked crested gibbon individuals spent most of the time resting, followed by feeding, travelling and socializing. Their main diet was fruit, supplemented with young leaves, flowers, mature leaves, and occasionally insects. Individuals selected food from 37 plant species, but predominately fed on just 16 of these species. The three most-consumed species were fruit from Ilex umbellulata (tree), Ficus. sp (liana), and young leaves from Lithocarpus elegans (tree). There was a significant relationship between feeding time and the availability of flowers, indicating that flowers were actively selected for when present. However, there was no significant relationship between feeding time and the availability of fruit or young leaves. Only a small number of plants bore fruit, with very low densities in the home range of this gibbon study group, but these plants produced a large abundance of fruit. These findings clearly indicate that fruit is the main diet for northern yellow-cheeked crested gibbons in the dry season, with young leaves, flowers, mature leaves and insects acting as secondary food sources. The northern yellow-cheeked crested gibbons selected only a small number of specific plants in their territory for food sources, indicating that any selective logging targeting these plant species would reduce food availability, and restrict the diet of these animals.  Fruits consumed by the northern yellow-cheeked crested gibbons were rich in carbohydrates and lipids, while young leaves were richest concentration of protein. Mature leaves had a high moisture content, whereas flowers contained condensed tannins more often than other plant tissues. All plant tissues consumed had similar amount of fibres. Generally, the food items consumed had higher concentrations of carbohydrate than protein or lipids. The overall diet of this group of gibbons was low in lipids. These results indicate that northern yellow-cheeked crested gibbon consumed food items with high concentrations of carbohydrate, and only selected a few food sources with high level of protein.  Overall, these findings have contributed important knowledge that can be used for long-term conservation of this gibbon species. There are a small number of key food species in the home range which need special protection. The northern yellow-cheeked crested gibbons consumed food items from different plant species, and as a consequence, all plant species selected play an important role for nutritional requirements by this gibbon species. When considering feeding requirement by the northern yellow-cheeked crested gibbons for captive breeding programs, diets should include fruit, which is rich in carbohydrates, and young leaves, which have high levels of protein.</p>


1991 ◽  
Vol 18 (1) ◽  
pp. 111 ◽  
Author(s):  
K Parry-Jones ◽  
ML Augee

A colony site occupied by grey-headed flying-foxes (Pteropus poliocephalus) from October to May on the central coast of N.S.W. was monitored over a 48 month period (1986-1990). Faecal and spat-out material was collected for microscopic determination of contents. Comparison of food items in the droppings with the array of possible food sources present in the vicinity of the colony at the same time showed a marked preference for certain foods, in particular blossoms of the family Myrtaceae and of the genus Banksia. Cultivated orchard fruits were not a preferred food and were only taken at times when preferred food items were scarce.


2012 ◽  
Vol 28 (2) ◽  
pp. 153-160 ◽  
Author(s):  
Alison M. Behie ◽  
Mary S. M. Pavelka

Abstract:Primates commonly consume leaves that are high in protein but low in digestion-inhibiting fibre. Due to the fact that mature leaves do not meet these criteria, they are typically avoided and many leaf-eating primates select for leaves high in protein and low in fibre leading to the theory that food selection is based on protein maximization. However, feeding records for a population of black howler monkey (Alouatta pigra) in Monkey River, Belize, collected over a 5-y period, together with synchronous phenological data, indicate that this population does not meet the expectation and actually prefer mature leaves. This study aims to describe the nutritional composition of the food supply and investigate the possibility that, rather than to maximize protein ingestion, mature leaves are eaten to balance nutrient intake. Macronutrient analyses (moisture, lipids, protein, NDF, ADF and simple sugars) were conducted on a sample of 96 plant samples from 18 food species of this population of black howler. Results reported here show that mature leaves eaten by howlers in this forest contain sufficient protein to meet minimum metabolic requirements (range: 11.6–24%; mean: 16.4% ± 3.8%) and have significantly higher concentrations of simple sugars than young leaves (means of 7.2% ± 2.7% vs. 4.4% ± 2.3% respectively). Thus, it appears that mature leaf ingestion is likely serving to balance energy and protein intake. This result may be due to the disruptive effects of a hurricane in 2001 that resulted in a loss of 80% of the howler population, changed forest composition and may have affected plant chemistry. Despite this, the data reported here suggest that the accepted view that mature leaves are simply fallback foods for primates, eaten only in times of preferred food scarcity, may have to be revised.


2011 ◽  
Vol 57 (1) ◽  
pp. 18-25 ◽  
Author(s):  
Qihai Zhou ◽  
Hua Wei ◽  
Zhonghao Huang ◽  
Chengming Huang

Abstract To enhance our understanding of dietary adaptations in macaques we studied the diet of the Assamese macaque Macaca assamensis in limestone seasonal rain forests at Nonggang Nature Reserve, China from September 2005 to August 2006. Our results show that although macaques fed on many plant species, 85.2% of the diet came from only 12 species, of which a bamboo species, Indocalamus calcicolus contributed to 62% of the diet. Young leaves were staple food items (74.1% of the diet) for Assamese macaques at Nonggang, and constituted the bulk of monthly diets almost year-round, ranging from 44.9% (July) to 92.9% (May). Young parts of Indocalamus calcicolus unexpanded leaves contributed to a large proportion of the young leaf diet in most months. Fruit accounted for only 17.4% of the diet, with a peak of consumption in July. We suggest that this highly folivorous diet may be related to the long lean season of fruit availability in limestone habitats as well as the utilization of cliffs of low fruit availability.


Agrotek ◽  
2018 ◽  
Vol 2 (3) ◽  
Author(s):  
Antonius Suparno ◽  
Opalina Logo ◽  
Dwiana Wasgito Purnomo

Sweet potato serves as a staple food for people in Jayawijaya. Many cultivars of sweet potatoes have been cultivated by Dani tribe in Kurulu as foot for their infant, child and adult as well as feeding especially for pigs. Base on the used of sweet potatoes as food source for infant and child, this study explored 10 different cultivars. As for the leaf morphology, it was indentified that the mature leaves have size around 15 � 18 cm. general outline of the leaf is reniform (40%), 60% have green colour leaf, 50% without leaf lobe, 60% of leaf lobes number is one, 70% of shape of central leaf lobe is toothed. Abazial leaf vein pigmentation have purple (40%), and petiole pigmentation is purple with green near leaf (60%), besides its tuber roots, sweet potatoes are also harvested for its shoots and green young leaves for vegetables.


2019 ◽  
Vol 15 (7) ◽  
pp. 685-693
Author(s):  
Arushi Jain ◽  
Pulkit Mathur

Background: Sulphites added as preservatives in food have been associated with adverse health effects in humans. Objective: The present study was designed with an objective of assessing the risk of sulphite exposure through food in adolescents (12-16 years old) of Delhi, India. Methods: A total of 1030 adolescents selected from four private and four government schools of Delhi, were asked to record their food intake using a 24 hour food record, repeated on three days, for assessing exposure to sulphites. The risk was assessed using six different scenarios of exposure. Results: The actual intake for sulphites for average consumers was 0.15 ± 0.13 mg / kg b.w. / day which was 21.4% of acceptable daily intake (ADI). For high consumers (P95), it was 65% of the ADI. However, for 2 respondents, the actual intake exceeded the ADI. The major food contributors to sulphite intake were beverage concentrates (46%), ready to serve beverages (22%) followed by miscellaneous food items (16%), mainly ice creams and snowballs. Estimation of sulphite intake using different exposure scenarios revealed that for certain scenarios where the highest reported sulphite level or maximum permissible levels were considered for calculation, the high consumers exceeded the ADI, though, for average consumers, intake was well below the ADI. Conclusion: Actual intake of sulphite for average consumers was well below the ADI but for high consumers was approaching the ADI. People with sulphite sensitivity need to be aware of hidden food sources of sulphites.


2021 ◽  
Vol 21 (1) ◽  
pp. 609-618
Author(s):  
R.K. Maikhuri ◽  
Dalbeer S. Parshwan ◽  
Pushpa Kewlani ◽  
Vikram S. Negi ◽  
Sandeep Rawat ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shugang Zhao ◽  
Hongxia Wang ◽  
Kai Liu ◽  
Linqing Li ◽  
Jinbing Yang ◽  
...  

Abstract Background Tissue culture is an effective method for the rapid breeding of seedlings and improving production efficiency, but explant browning is a key limiting factor of walnut tissue culture. Specifically, the polymerization of PPO-derived quinones that cause explant browning of walnut is not well understood. This study investigated explants of ‘Zanmei’ walnut shoot apices cultured in agar (A) or vermiculite (V) media, and the survival percentage, changes in phenolic content, POD and PPO activity, and JrPPO expression in explants were studied to determine the role of PPO in the browning of walnut explants. Results The results showed that the V media greatly reduced the death rate of explants, and 89.9 and 38.7% of the explants cultured in V media and A media survived, respectively. Compared with that of explants at 0 h, the PPO of explants cultured in A was highly active throughout the culture, but activity in those cultured in V remained low. The phenolic level of explants cultured in A increased significantly at 72 h but subsequently declined, and the content in the explants cultured in V increased to a high level only at 144 h. The POD in explants cultured in V showed high activity that did not cause browning. Gene expression assays showed that the expression of JrPPO1 was downregulated in explants cultured in both A and V. However, the expression of JrPPO2 was upregulated in explants cultured in A throughout the culture and upregulated in V at 144 h. JrPPO expression analyses in different tissues showed that JrPPO1 was highly expressed in stems, young leaves, mature leaves, catkins, pistils, and hulls, and JrPPO2 was highly expressed in mature leaves and pistils. Moreover, browning assays showed that both explants in A and leaf tissue exhibited high JrPPO2 activity. Conclusion The rapid increase in phenolic content caused the browning and death of explants. V media delayed the rapid accumulation of phenolic compounds in walnut explants in the short term, which significantly decreased explants mortality. The results suggest that JrPPO2 plays a key role in the oxidation of phenols in explants after branch injury.


1997 ◽  
Vol 10 (2) ◽  
pp. 234-239 ◽  
Author(s):  
F. Han ◽  
A. Kleinhofs ◽  
A. Kilian ◽  
S. E. Ullrich

The NADPH-dependent HC-toxin reductase (HCTR), encoded by Hm1 in maize, inactivates HC-toxin produced by the fungus Cochliobolus carbonum, and thus confers resistance to the pathogen. The fact that C. carbonum only infects maize (Zea mays) and is the only species known to produce HC-toxin raises the question: What are the biological functions of HCTR in other plant species? An HCTR-like enzyme may function to detoxify toxins produced by pathogens which infect other plant species (R. B. Meeley, G. S. Johal, S. E. Briggs, and J. D. Walton, Plant Cell, 4:71–77, 1992). Hm1 homolog in rice (Y. Hihara, M. Umeda, C. Hara, Q. Liu, S. Aotsuka, K. Toriyama, and H. Uchimiya, unpublished) and HCTR activity in barley, wheat, oats and sorghum have been reported (R. B. Meeley and J. D. Walton, Plant Physiol. 97:1080–1086, 1993). To investigate the sequence conservation of Hm1 and HCTR in barley and the possible relationship of barley Hm1 homolog to the known disease resistance genes, we cloned and mapped a barley (Hordeum vulgare) Hm1-like gene. A putative full-length cDNA clone, Bhm1-18, was isolated from a cDNA library consisting of mRNA from young leaves, inflorescences, and immature embryos. This 1,297-bp clone encodes 363 amino acids which show great similarity (81.6%) with the amino acid sequence of HM1 in maize. Two loci were mapped to barley molecular marker linkage maps with Bhm1-18 as the probe; locus A (Bhm1A) on the long arm of chromosome 1, and locus B (Bhm1B) on the short arm of chromosome 1 which is syntenic to maize chromosome 9 containing the Hm2 locus. The Bhm1-18 probe hybridized strongly to a Southern blot of a wide range of grass species, indicating high conservation of HCTR at the DNA sequence level among grasses. The HCTR mRNA was detected in barley roots, leaves, inflorescences, and immature embryos. The conservation of the HCTR sequence, together with its expression in other plant species (R. B. Meeley and J. D. Walton, Plant Physiol. 97:1080–1086, 1993), suggests HCTR plays an important functional role in other plant species.


Hoehnea ◽  
2017 ◽  
Vol 44 (2) ◽  
pp. 236-245 ◽  
Author(s):  
Juliana Moreno Pina ◽  
Sérgio Tadeu Meirelles ◽  
Regina Maria de Moraes

ABSTRACT This study aimed to investigate the importance of leaf age, meteorological conditions and ozone concentration (O3) on gas exchange of Psidium guajava ‛Paluma'. Saplings were grown and exposed in standard conditions in the city of São Paulo, in six periods of three months with weekly measurements in young and mature leaves. Gas exchanges were higher in young leaves for almost the entire experiment. Mature leaves showed greater reduction in gas exchange. The multivariate analysis of biotic and abiotic variables indicated that vapor pressure deficit (VPD), O3 concentration and radiation were the main variables associated with gas exchange decrease in young leaves. In mature leaves the influence of VPD is lower, but the temperature importance is higher. Moreover, the opposition between assimilation and O3 is more evident in mature leaves, indicating their greater sensitivity to O3.


Sign in / Sign up

Export Citation Format

Share Document