Phylogenetic relationships, population connectivity, and development of genetic assignment testing in Buller's Albatross (Thalassarche bulleri ssp.)

2021 ◽  
Author(s):  
◽  
Jana Wold

<p>The Diomedeidae (Albatrosses) family is comprised of 22 recognised species, 13 are of high conservation concern because they are experiencing population declines. The taxonomy of albatrosses has always been problematic, which makes it difficult to estimate the number and size of breeding groups within a species. The Northern Buller’s Albatross (Thalassarche bulleri platei) and Southern Buller’s Albatross (Thalassarche bulleri bulleri) (Robertson & Nunn 1998; Turbott 1990) were recognised as separate species until 2006. A review of morphological data provided a basis for defining them as one species (Thalassarche bulleri); a result that was supported by international conservation agreements. However, there was no genetic data available at the time to corroborate the taxonomic change. The species status of Buller’s Albatross ssp. is an important issue because they are consistently recorded in the top five observed seabird interactions with commercial fishing vessels within New Zealand's Exclusive Economic Zone. Despite their prevalence in fisheries interactions, the relative impact of commercial fishing activity on northern and southern populations is unknown. Incidental mortality of albatrosses in commercial fisheries is recognised as a primary source of population disturbance.  The overall goal of this thesis research was to investigate the genetic differences between the two sub-species of Buller’s Albatross. DNA was isolated from blood samples collected from a total of 73 birds from two Northern Buller’s Albatross colonies (n = 26) and two Southern Buller’s Albatross colonies (n = 47). The degree of genetic differentiation between the Northern and Southern taxa was estimated using DNA sequences from a 221 bp fragment of the mitochondrial control region, Domain II (CRII). The genetic differentiation between regional colony groups was high (pairwise ΦST = 0.621, p < 0.00001). Two haplogroups were identified within Northern Buller’s Albatross, while Southern Buller’s Albatross samples composed a single haplogroup. An analysis of molecular variance did not find any significant population structuring at the colony level. All individuals sampled from fisheries bycatch (n = 97) were assigned with maximum probability to either Northern (n = 19) or Southern Buller’s Albatross (n = 78; P = 1.00). The DNA sequences differences found in the mitochondrial control region can be used to assign provenance of T. bulleri ssp. samples, which will be a useful conservation management tool.  In addition, a genome wide set of markers was obtained using a Genotyping by Sequencing approach. DNA was digested using restriction enzymes, fragments were labeled adaptor sequences, and shotgun sequenced on an Illumina platform by AgResearch. The Stacks pipeline was used to filter the sequences and obtain a set of single nucleotide polymorphism (SNP) markers across the genome. Estimates of genetic diversity and gene flow were conducted for 26 319 putative loci comprised of 54,061 single nucleotide polymorphisms. Estimates of genetic diversity were consistent across datasets with both taxa exhibiting similar levels of nucleotide diversity (Northern π ≈ 0.002 – 0.004; Southern π ≈ 0.002 – 0.003). However, estimates of genetic differentiation increased slightly as filtering protocols became increasingly restrictive (FST ≈ 0.019 – 0.048). This low level of differentiation was supported by admixture analyses, which identified two distinct ‘clusters’, one corresponding to T. b. platei and the second to T. b. bulleri. The results of this research demonstrate that Northern and Southern Buller’s Albatrosses are two genetically distinct groups.</p>

2021 ◽  
Author(s):  
◽  
Jana Wold

<p>The Diomedeidae (Albatrosses) family is comprised of 22 recognised species, 13 are of high conservation concern because they are experiencing population declines. The taxonomy of albatrosses has always been problematic, which makes it difficult to estimate the number and size of breeding groups within a species. The Northern Buller’s Albatross (Thalassarche bulleri platei) and Southern Buller’s Albatross (Thalassarche bulleri bulleri) (Robertson & Nunn 1998; Turbott 1990) were recognised as separate species until 2006. A review of morphological data provided a basis for defining them as one species (Thalassarche bulleri); a result that was supported by international conservation agreements. However, there was no genetic data available at the time to corroborate the taxonomic change. The species status of Buller’s Albatross ssp. is an important issue because they are consistently recorded in the top five observed seabird interactions with commercial fishing vessels within New Zealand's Exclusive Economic Zone. Despite their prevalence in fisheries interactions, the relative impact of commercial fishing activity on northern and southern populations is unknown. Incidental mortality of albatrosses in commercial fisheries is recognised as a primary source of population disturbance.  The overall goal of this thesis research was to investigate the genetic differences between the two sub-species of Buller’s Albatross. DNA was isolated from blood samples collected from a total of 73 birds from two Northern Buller’s Albatross colonies (n = 26) and two Southern Buller’s Albatross colonies (n = 47). The degree of genetic differentiation between the Northern and Southern taxa was estimated using DNA sequences from a 221 bp fragment of the mitochondrial control region, Domain II (CRII). The genetic differentiation between regional colony groups was high (pairwise ΦST = 0.621, p < 0.00001). Two haplogroups were identified within Northern Buller’s Albatross, while Southern Buller’s Albatross samples composed a single haplogroup. An analysis of molecular variance did not find any significant population structuring at the colony level. All individuals sampled from fisheries bycatch (n = 97) were assigned with maximum probability to either Northern (n = 19) or Southern Buller’s Albatross (n = 78; P = 1.00). The DNA sequences differences found in the mitochondrial control region can be used to assign provenance of T. bulleri ssp. samples, which will be a useful conservation management tool.  In addition, a genome wide set of markers was obtained using a Genotyping by Sequencing approach. DNA was digested using restriction enzymes, fragments were labeled adaptor sequences, and shotgun sequenced on an Illumina platform by AgResearch. The Stacks pipeline was used to filter the sequences and obtain a set of single nucleotide polymorphism (SNP) markers across the genome. Estimates of genetic diversity and gene flow were conducted for 26 319 putative loci comprised of 54,061 single nucleotide polymorphisms. Estimates of genetic diversity were consistent across datasets with both taxa exhibiting similar levels of nucleotide diversity (Northern π ≈ 0.002 – 0.004; Southern π ≈ 0.002 – 0.003). However, estimates of genetic differentiation increased slightly as filtering protocols became increasingly restrictive (FST ≈ 0.019 – 0.048). This low level of differentiation was supported by admixture analyses, which identified two distinct ‘clusters’, one corresponding to T. b. platei and the second to T. b. bulleri. The results of this research demonstrate that Northern and Southern Buller’s Albatrosses are two genetically distinct groups.</p>


2016 ◽  
Vol 24 (2) ◽  
pp. 85-97 ◽  
Author(s):  
Sylvanus A. Nwafili ◽  
Tian-Xiang Gao

Abstract The genetic diversity and population structure of Chrysichthys nigrodigitatus were evaluated using a 443 base pair fragment of the mitochondrial control region. Among the eight populations collected comprising 129 individuals, a total of 89 polymorphic sites defined 57 distinct haplotypes. The mean haplotype diversity and nucleotide diversity of the eight populations were 0.966±0.006 and 0.0359±0.004, respectively. Analysis of molecular variance showed significant genetic differentiation among the eight populations (FST =0.34; P < 0.01). The present results revealed that C. nigrodigitatus populations had a high level of genetic diversity and distinct population structures. We report the existence of two monophyletic matrilineal lineages with mean genetic distance of 10.5% between them. Non-significant negative Tajima’s D and Fu’s Fs for more than half the populations suggests that the wild populations of C. nigrodigitatus underwent a recent population expansion, although a weak one since the late Pleistocene.


2020 ◽  
Vol 7 (2) ◽  
pp. 191558 ◽  
Author(s):  
Michael B. Herrera ◽  
Spiridoula Kraitsek ◽  
Jose A. Alcalde ◽  
Daniel Quiroz ◽  
Herman Revelo ◽  
...  

Chickens ( Gallus gallus domesticus ) from the Americas have long been recognized as descendants of European chickens, transported by early Europeans since the fifteenth century. However, in recent years, a possible pre-Columbian introduction of chickens to South America by Polynesian seafarers has also been suggested. Here, we characterize the mitochondrial control region genetic diversity of modern chicken populations from South America and compare this to a worldwide dataset in order to investigate the potential maternal genetic origin of modern-day chicken populations in South America. The genetic analysis of newly generated chicken mitochondrial control region sequences from South America showed that the majority of chickens from the continent belong to mitochondrial haplogroup E. The rest belongs to haplogroups A, B and C, albeit at very low levels. Haplogroup D, a ubiquitous mitochondrial lineage in Island Southeast Asia and on Pacific Islands is not observed in continental South America. Modern-day mainland South American chickens are, therefore, closely allied with European and Asian chickens. Furthermore, we find high levels of genetic contributions from South Asian chickens to those in Europe and South America. Our findings demonstrate that modern-day genetic diversity of mainland South American chickens appear to have clear European and Asian contributions, and less so from Island Southeast Asia and the Pacific Islands. Furthermore, there is also some indication that South Asia has more genetic contribution to European chickens than any other Asian chicken populations.


Scientifica ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Rashmi Verma ◽  
Mahender Singh ◽  
Sudhir Kumar

The mitochondrial control region has been the first choice for examining the population structure but hypervariability and homoplasy have reduced its suitability. We analysed eight populations using control region for examining the population structure ofHilsa. Although the control region analysis revealed broad structuring between the Arabian Sea and Bay of Bengal (FST  0.0441,p<0.001) it was unable to detect structure among riverine populations. These results suggest that the markers used must be able to distinguish populations and control region has led to an underestimation of genetic differentiation among populations ofHilsa.


2015 ◽  
Vol 16 (3) ◽  
pp. 489 ◽  
Author(s):  
C. MAGGI ◽  
M. GONZÁLEZ-WANGÜEMERT

Parastichopus regalis (Cuvier, 1817) is the most expensive seafood product on the catalonian market (NE Spain), with prices around 130 €/Kg (fresh weight). Despite its ecological and economic importance, biological and genetic information on this sea cucumber species is scarce. We provided the first insight on the genetic structure of P. regalis using sequences of cytochrome oxidase I (COI) and 16S genes, as well as a morphological description of its populations. Individuals were collected in six locations along the Spanish Mediterranean coast, including an area under fishery pressure (Catalonia). We found high haplotype diversity and low nucleotide diversity for both genes, with higher levels of genetic diversity observed on COI gene. Population pairwise fixation index (FST), AMOVA and correspondence analysis (CA) based on COI, revealed significant genetic differentiation among some locations. However, further analysis using nuclear markers (e.g. microsatellites) would be necessary to corroborate these results. Moreover, the genetic and morphological data may indicate fishery effects on the Catalonian population with decrease of the size and weight average and lower genetic diversity compared to locations without fishery pressure. For an appropriate management of this species, we suggest: 1) an accurate assessment of the stocks status along the Spanish coasts; 2) the study of the reproductive cycle of this target species and the establishment of a closed fishery season according to it; 3) the founding of protected areas (i.e. not take zones) to conserve healthy populations and favour the recruitment on the nearby areas.


2020 ◽  
Vol 20 (10) ◽  
pp. 767-776
Author(s):  
Yusuf Bektas ◽  
Ismail Aksu ◽  
Gokhan Kalayci ◽  
Davut Turan

This study aimed to investigate the genetic diversity and population structure of Wels catfish Silurus glanis L. 1758 in Turkey using squences of the mitochondrial DNA control region The 887-bp fragment of D-loop was aligned for 112 S. glanis individuals from ten wild populations in Turkey, defined by 29 polymorphic sites comprising 16 haplotypes. The low haplotype diversity and nucleotide diversity within each population ranged from 0.000 to 0.378 and from 0.0000 to 0.0045, respectively. Analysis of molecular variance showed significant genetic differentiation among ten populations (FST =0.940; P<0.01). AMOVA revealed that the most of genetic variation was found between Thrace and Anatolia clades (74,07 %). The phylogenetic trees and haplotype network topologies were consistent with the results of AMOVA analysis. The non-significant negative Tajima's D (-0.875 P<0.05) and Fu's Fs (-0.381, P<0.02) values and mismatch distribution for S. glanis populations indicated no evidence for changes in population size. Furthermore, goodness-of-fit of the observed versus the theoretical mismatch distribution tested the sum of squared deviation (SSD; 0.00308, P>0.05), Harpending’s raggedness index (Hri; 0,300, P>0.05) and Ramos-Onsins & Rozas (R2; 0,0771, P>0.05), supporting population neutrality.


2007 ◽  
Vol 97 (12) ◽  
pp. 1543-1549 ◽  
Author(s):  
Ester Wickert ◽  
Marcos Antonio Machado ◽  
Eliana G. M. Lemos

The aim of this study was to obtain information about genetic diversity and make some inferences about the relationship of 27 strains of Xylella fastidiosa from different hosts and distinct geographical areas. Single-nucleotide polymorphism (SNP) molecular markers were identified in DNA sequences from 16 distinct regions of the genome of 24 strains of X. fastidiosa from coffee and citrus plants. Among the Brazilian strains, coffee-dependent strains have a greater number of SNPs (10 to 24 SNPs) than the citrus-based strains (2 to 12 SNPs); all the strains were compared with the sequenced strain 9a5c. The identified SNP markers were able to distinguish, for the first time, strains from citrus plants and coffee and showed that strains from coffee present higher genetic diversity than the others. These markers also have proven to be efficient for discriminating strains from the same host obtained from different geographic regions. X. fastidiosa, the causal agent of citrus variegated chlorosis, possesses genetic diversity, and the SNP markers were highly efficient for discriminating genetically close organisms.


Sign in / Sign up

Export Citation Format

Share Document