scholarly journals Using nanotechnology to enhance plant growth

2021 ◽  
Author(s):  
◽  
Nurul Akmar Binti Che Zaudin

<p>Efficient and effective delivery of fertilisers, herbicides, pesticides and growth regulating compounds to plants is the subject of much ongoing research. The objective of this research was to develop nano-formulations for delivery of compounds to plants. Two formulations were developed: the first was solution-based focused on encapsulation of the active ingredient in a nanoemulsion. Nanoemulsions should be ideal for facilitating transfer of compounds to plant leaves as their size correlates well with the nanoscale surface features of leaves, achieving significantly greater total contact area between the oil droplets and the leaves. The second nano-formulation was solid-state based, focused on locating the active ingredient within the tubules of a nanotube clay. For proof-of-concept two synthetic plant hormones, N-phenyl-N‘-(2-chloro-4-pyridyl)urea (CPPU) or forchlorfenuron, a synthetic cytokinin, and 2,4-dichlorophenoxyacetic acid (2,4-D), a synthetic auxin, were chosen for encapsulation. CPPU is a phenylurea derivative that shows strikingly strong cytokinin-like activity in plants, including delaying senescence. It is highly water insoluble, but soluble in organic solvents. It is widely used in a variety of crops, particularly kiwifruit and table grapes. Delivery of CPPU safely, efficiently and at the appropriate dosage is a priority as overdosing or incorrect timing of application causes detrimental effects on fruit firmness and other quality attributes. Auxins are also a group of plant hormone. 2,4-D is a synthetic auxin which has been widely used at high concentrations as a herbicide, at medium concentrations for fruit thinning, and at low concentrations promotes root initiation, but at even lower concentrations promote root elongation. Consequently, careful control of dosage is required to obtain the desired effect. The nanoemulsion system developed was water/polysorbate 80/glycerol/soybean oil. The active ingredient, CPPU, was incorporated into the nanoemulsion via the oil phase in a pre-concentrate which was then crash diluted to yield the final nanoemulsion. Nanoemulsions are created only when the concentrate is located in the bicontinuous or oil-in-water microemulsion regions of the phase diagram. The droplet size of the nanoemulsions was measured using dynamic light scattering with droplets ranging in size from 30 – 100 nm. The CPPU-loaded nanoemulsions were stable for more than three days. To determine if the nanoemulsion was an effective delivery system, a leaf senescence bioassay was conducted to test the senescence-delaying effect of the CPPU-loaded nanoemulsions when applied to explants. The nanoemulsions were applied directly to the leaves of dwarf bean explants. Chlorophyll was extracted from the leaves and measured spectrophotometrically before and several days following treatment. The CPPU-loaded nanoemulsions enhanced the effectiveness of CPPU in delaying leaf senescence compared with the control experiments, including direct application of CPPU. A >10-fold reduction in CPPU concentration was achieved. The second delivery method was a solid-state preparation, using halloysite clay nanotubes loaded with 2,4-D. A rooting bioassay using mung bean explants was used for proof of concept. Application of 2,4-D nanotubes to the cut end of a young stem, without roots, stimulated root formation compared to controls after 10 days and at a lower applied concentration. The retardation of root elongation, relative to controls after 13 days, potentially indicated continued slow release of the active ingredient from the nanotubes. Results obtained from this research indicate that nano-formulations have the potential to deliver biologically active compounds to plants in the horticultural and agricultural sectors at effective concentrations lower than in current usage.</p>

2021 ◽  
Author(s):  
◽  
Nurul Akmar Binti Che Zaudin

<p>Efficient and effective delivery of fertilisers, herbicides, pesticides and growth regulating compounds to plants is the subject of much ongoing research. The objective of this research was to develop nano-formulations for delivery of compounds to plants. Two formulations were developed: the first was solution-based focused on encapsulation of the active ingredient in a nanoemulsion. Nanoemulsions should be ideal for facilitating transfer of compounds to plant leaves as their size correlates well with the nanoscale surface features of leaves, achieving significantly greater total contact area between the oil droplets and the leaves. The second nano-formulation was solid-state based, focused on locating the active ingredient within the tubules of a nanotube clay.  For proof-of-concept two synthetic plant hormones, N-phenyl-N‘-(2-chloro-4-pyridyl)urea (CPPU) or forchlorfenuron, a synthetic cytokinin, and 2,4-dichlorophenoxyacetic acid (2,4-D), a synthetic auxin, were chosen for encapsulation. CPPU is a phenylurea derivative that shows strikingly strong cytokinin-like activity in plants, including delaying senescence. It is highly water insoluble, but soluble in organic solvents. It is widely used in a variety of crops, particularly kiwifruit and table grapes. Delivery of CPPU safely, efficiently and at the appropriate dosage is a priority as overdosing or incorrect timing of application causes detrimental effects on fruit firmness and other quality attributes. Auxins are also a group of plant hormone. 2,4-D is a synthetic auxin which has been widely used at high concentrations as a herbicide, at medium concentrations for fruit thinning, and at low concentrations promotes root initiation, but at even lower concentrations promote root elongation. Consequently, careful control of dosage is required to obtain the desired effect.  The nanoemulsion system developed was water/polysorbate 80/glycerol/soybean oil. The active ingredient, CPPU, was incorporated into the nanoemulsion via the oil phase in a pre-concentrate which was then crash diluted to yield the final nanoemulsion. Nanoemulsions are created only when the concentrate is located in the bicontinuous or oil-in-water microemulsion regions of the phase diagram. The droplet size of the nanoemulsions was measured using dynamic light scattering with droplets ranging in size from 30 – 100 nm. The CPPU-loaded nanoemulsions were stable for more than three days.  To determine if the nanoemulsion was an effective delivery system, a leaf senescence bioassay was conducted to test the senescence-delaying effect of the CPPU-loaded nanoemulsions when applied to explants. The nanoemulsions were applied directly to the leaves of dwarf bean explants. Chlorophyll was extracted from the leaves and measured spectrophotometrically before and several days following treatment. The CPPU-loaded nanoemulsions enhanced the effectiveness of CPPU in delaying leaf senescence compared with the control experiments, including direct application of CPPU. A >10-fold reduction in CPPU concentration was achieved.  The second delivery method was a solid-state preparation, using halloysite clay nanotubes loaded with 2,4-D. A rooting bioassay using mung bean explants was used for proof of concept. Application of 2,4-D nanotubes to the cut end of a young stem, without roots, stimulated root formation compared to controls after 10 days and at a lower applied concentration. The retardation of root elongation, relative to controls after 13 days, potentially indicated continued slow release of the active ingredient from the nanotubes.  Results obtained from this research indicate that nano-formulations have the potential to deliver biologically active compounds to plants in the horticultural and agricultural sectors at effective concentrations lower than in current usage.</p>


2021 ◽  
Author(s):  
◽  
Nurul Akmar Binti Che Zaudin

<p>Efficient and effective delivery of fertilisers, herbicides, pesticides and growth regulating compounds to plants is the subject of much ongoing research. The objective of this research was to develop nano-formulations for delivery of compounds to plants. Two formulations were developed: the first was solution-based focused on encapsulation of the active ingredient in a nanoemulsion. Nanoemulsions should be ideal for facilitating transfer of compounds to plant leaves as their size correlates well with the nanoscale surface features of leaves, achieving significantly greater total contact area between the oil droplets and the leaves. The second nano-formulation was solid-state based, focused on locating the active ingredient within the tubules of a nanotube clay.  For proof-of-concept two synthetic plant hormones, N-phenyl-N‘-(2-chloro-4-pyridyl)urea (CPPU) or forchlorfenuron, a synthetic cytokinin, and 2,4-dichlorophenoxyacetic acid (2,4-D), a synthetic auxin, were chosen for encapsulation. CPPU is a phenylurea derivative that shows strikingly strong cytokinin-like activity in plants, including delaying senescence. It is highly water insoluble, but soluble in organic solvents. It is widely used in a variety of crops, particularly kiwifruit and table grapes. Delivery of CPPU safely, efficiently and at the appropriate dosage is a priority as overdosing or incorrect timing of application causes detrimental effects on fruit firmness and other quality attributes. Auxins are also a group of plant hormone. 2,4-D is a synthetic auxin which has been widely used at high concentrations as a herbicide, at medium concentrations for fruit thinning, and at low concentrations promotes root initiation, but at even lower concentrations promote root elongation. Consequently, careful control of dosage is required to obtain the desired effect.  The nanoemulsion system developed was water/polysorbate 80/glycerol/soybean oil. The active ingredient, CPPU, was incorporated into the nanoemulsion via the oil phase in a pre-concentrate which was then crash diluted to yield the final nanoemulsion. Nanoemulsions are created only when the concentrate is located in the bicontinuous or oil-in-water microemulsion regions of the phase diagram. The droplet size of the nanoemulsions was measured using dynamic light scattering with droplets ranging in size from 30 – 100 nm. The CPPU-loaded nanoemulsions were stable for more than three days.  To determine if the nanoemulsion was an effective delivery system, a leaf senescence bioassay was conducted to test the senescence-delaying effect of the CPPU-loaded nanoemulsions when applied to explants. The nanoemulsions were applied directly to the leaves of dwarf bean explants. Chlorophyll was extracted from the leaves and measured spectrophotometrically before and several days following treatment. The CPPU-loaded nanoemulsions enhanced the effectiveness of CPPU in delaying leaf senescence compared with the control experiments, including direct application of CPPU. A >10-fold reduction in CPPU concentration was achieved.  The second delivery method was a solid-state preparation, using halloysite clay nanotubes loaded with 2,4-D. A rooting bioassay using mung bean explants was used for proof of concept. Application of 2,4-D nanotubes to the cut end of a young stem, without roots, stimulated root formation compared to controls after 10 days and at a lower applied concentration. The retardation of root elongation, relative to controls after 13 days, potentially indicated continued slow release of the active ingredient from the nanotubes.  Results obtained from this research indicate that nano-formulations have the potential to deliver biologically active compounds to plants in the horticultural and agricultural sectors at effective concentrations lower than in current usage.</p>


2021 ◽  
Author(s):  
◽  
Nurul Akmar Binti Che Zaudin

<p>Efficient and effective delivery of fertilisers, herbicides, pesticides and growth regulating compounds to plants is the subject of much ongoing research. The objective of this research was to develop nano-formulations for delivery of compounds to plants. Two formulations were developed: the first was solution-based focused on encapsulation of the active ingredient in a nanoemulsion. Nanoemulsions should be ideal for facilitating transfer of compounds to plant leaves as their size correlates well with the nanoscale surface features of leaves, achieving significantly greater total contact area between the oil droplets and the leaves. The second nano-formulation was solid-state based, focused on locating the active ingredient within the tubules of a nanotube clay. For proof-of-concept two synthetic plant hormones, N-phenyl-N‘-(2-chloro-4-pyridyl)urea (CPPU) or forchlorfenuron, a synthetic cytokinin, and 2,4-dichlorophenoxyacetic acid (2,4-D), a synthetic auxin, were chosen for encapsulation. CPPU is a phenylurea derivative that shows strikingly strong cytokinin-like activity in plants, including delaying senescence. It is highly water insoluble, but soluble in organic solvents. It is widely used in a variety of crops, particularly kiwifruit and table grapes. Delivery of CPPU safely, efficiently and at the appropriate dosage is a priority as overdosing or incorrect timing of application causes detrimental effects on fruit firmness and other quality attributes. Auxins are also a group of plant hormone. 2,4-D is a synthetic auxin which has been widely used at high concentrations as a herbicide, at medium concentrations for fruit thinning, and at low concentrations promotes root initiation, but at even lower concentrations promote root elongation. Consequently, careful control of dosage is required to obtain the desired effect. The nanoemulsion system developed was water/polysorbate 80/glycerol/soybean oil. The active ingredient, CPPU, was incorporated into the nanoemulsion via the oil phase in a pre-concentrate which was then crash diluted to yield the final nanoemulsion. Nanoemulsions are created only when the concentrate is located in the bicontinuous or oil-in-water microemulsion regions of the phase diagram. The droplet size of the nanoemulsions was measured using dynamic light scattering with droplets ranging in size from 30 – 100 nm. The CPPU-loaded nanoemulsions were stable for more than three days. To determine if the nanoemulsion was an effective delivery system, a leaf senescence bioassay was conducted to test the senescence-delaying effect of the CPPU-loaded nanoemulsions when applied to explants. The nanoemulsions were applied directly to the leaves of dwarf bean explants. Chlorophyll was extracted from the leaves and measured spectrophotometrically before and several days following treatment. The CPPU-loaded nanoemulsions enhanced the effectiveness of CPPU in delaying leaf senescence compared with the control experiments, including direct application of CPPU. A >10-fold reduction in CPPU concentration was achieved. The second delivery method was a solid-state preparation, using halloysite clay nanotubes loaded with 2,4-D. A rooting bioassay using mung bean explants was used for proof of concept. Application of 2,4-D nanotubes to the cut end of a young stem, without roots, stimulated root formation compared to controls after 10 days and at a lower applied concentration. The retardation of root elongation, relative to controls after 13 days, potentially indicated continued slow release of the active ingredient from the nanotubes. Results obtained from this research indicate that nano-formulations have the potential to deliver biologically active compounds to plants in the horticultural and agricultural sectors at effective concentrations lower than in current usage.</p>


2021 ◽  
Vol 28 ◽  
Author(s):  
Anastasia A. Uspenskaya ◽  
Ekaterina A. Nimenko ◽  
Aleksei E. Machulkin ◽  
Elena K. Beloglazkina ◽  
Alexander G. Majouga

: Cancer is one of the leading social problems of the modern world. Today prostate cancer is the second leading cause of cancer deaths among men. Targeted drug delivery is widely used to treat and diagnose prostate cancer. Conjugates selectively binding to prostate specific membrane antigen based on urea ligands are being actively developed against this disease. The linker has a significant influence on the biological activity of such conjugates. The linker performs a large number of functions, and its modification is one of the key methods of creating the best pharmacological profile. This review aims to discuss and analyze the main approaches to the method of introduction and synthesis of linkers for this type of conjugates without a description of the influence of biologically active molecules, as well as to establish the key modification methods that have a significant role on the structure-activity relationship. For this purpose, a review of the current scientific literature was performed, both for the conjugates under development and for those already undergoing clinical trials. It was found that the optimal structure is a linker containing an aliphatic fragment near the vector-molecule (n(CH2) = 3-6), followed by a polypeptide chain consisting of 2 to 4 amino acid residues. The presence of a Phe-Phe dipeptide chain or the introduction of negatively charged groups also has a positive effect. Ongoing research in this field helps to establish the accurate effect of each linker fragment, and the development of solid-phase synthesis methods makes it much easier to achieve this goal.


2015 ◽  
Vol 112 (7) ◽  
pp. 1995-1999 ◽  
Author(s):  
Sam Emaminejad ◽  
Mehdi Javanmard ◽  
Chaitanya Gupta ◽  
Shuai Chang ◽  
Ronald W. Davis ◽  
...  

The controlled immobilization of proteins on solid-state surfaces can play an important role in enhancing the sensitivity of both affinity-based biosensors and probe-free sensing platforms. Typical methods of controlling the orientation of probe proteins on a sensor surface involve surface chemistry-based techniques. Here, we present a method of tunably controlling the immobilization of proteins on a solid-state surface using electric field. We study the ability to orient molecules by immobilizing IgG molecules in microchannels while applying lateral fields. We use atomic force microscopy to both qualitatively and quantitatively study the orientation of antibodies on glass surfaces. We apply this ability for controlled orientation to enhance the performance of affinity-based assays. As a proof of concept, we use fluorescence detection to indirectly verify the modulation of the orientation of proteins bound to the surface. We studied the interaction of fluorescently tagged anti-IgG with surface immobilized IgG controlled by electric field. Our study demonstrates that the use of electric field can result in more than 100% enhancement in signal-to-noise ratio compared with normal physical adsorption.


2019 ◽  
Vol 10 (4) ◽  
pp. 26-38
Author(s):  
G. G. Avakyan ◽  
T. A. Voronina ◽  
L. N. Nerobkova ◽  
G. N. Avakyan

The aimis to develop an antiepileptic drug based on polymer nanoparticles with 2-ethyl-6-methyl-3-oxypyridine succinate to facilitate the drug transport through the blood-brain barrier.Materials and methods.The nano-drug was created using the biologically active substance 2-ethyl-6-methyl-3-hydroxypyridine succinate and polybutyl cyanoacrylate (PBCA) nanoparticles. The advantages of this nano-form over the active ingredient of the same drug were studied using experimental models: the maximum electroshock test (MES), the antagonism test with corazol, models with a cobaltinduced epileptic focus and secondary generalized convulsions, and models of status epilepticus.Results.The antiseizure effects of the nanoform on the experimental models of epilepsy are identified.Conclusion.The nano-drug reduces the number of secondary generalized clonic-tonic seizures by 7.8 times; it also reduces 10-fold the animal mortality and diminishes the seizure manifestations that occur in the interictal period of the epileptic status.


2020 ◽  
Vol 117 (14) ◽  
pp. 7658-7664 ◽  
Author(s):  
Wilhelm Johannisson ◽  
Ross Harnden ◽  
Dan Zenkert ◽  
Göran Lindbergh

Structures that are capable of changing shape can increase efficiency in many applications, but are often heavy and maintenance intensive. To reduce the mass and mechanical complexity solid-state morphing materials are desirable but are typically nonstructural and problematic to control. Here we present an electrically controlled solid-state morphing composite material that is lightweight and has a stiffness higher than aluminum. It is capable of producing large deformations and holding them with no additional power, albeit at low rates. The material is manufactured from commercial carbon fibers and a structural battery electrolyte, and uses lithium-ion insertion to produce shape changes at low voltages. A proof-of-concept material in a cantilever setup is used to show morphing, and analytical modeling shows good correlation with experimental observations. The concept presented shows considerable promise and paves the way for stiff, solid-state morphing materials.


2019 ◽  
Vol 47 (10) ◽  
pp. 5130-5145
Author(s):  
Frédéric Dutheil ◽  
Elodie Chaplais ◽  
Audrey Vilmant ◽  
Denise Lanoir ◽  
Daniel Courteix ◽  
...  

Objective Work-related stress is a public health issue. Stress has multiple physical and psychological consequences, the most serious of which are increased mortality and cardiovascular morbidity. The ThermStress protocol was designed to offer a short residential thermal spa program for work-related stress prevention that is compatible with a professional context. Methods Participants will be 56 male and female workers aged 18 years or above. All participants will undergo a 6-day residential spa program comprising psychological intervention, physical activity, thermal spa treatment, health education, eating disorder therapy and a follow-up. On six occasions, participants’ heart rate variability, cardiac remodelling and function, electrodermal activity, blood markers, anthropometry and body composition, psychology and quality of life will be measured using questionnaires and bone parameters. Results This study protocol reports the planned and ongoing research for this intervention. Discussion The ThermStress protocol has been approved by an institutional ethics committee (ANSM: 2016 A02082 49). It is expected that this proof of concept study will highlight the effect of a short-term specific residential thermal spa program on the prevention of occupational burnout and work-related stress. The findings will be disseminated at several research conferences and in published articles in peer-reviewed journals. Trial Registration: ClinicalTrials.gov (NCT 03536624, 24/05/2018)


1998 ◽  
Vol 441 (2-3) ◽  
pp. 137-148 ◽  
Author(s):  
Hazime Saitô ◽  
Satoru Tuzi ◽  
Satoru Yamaguchi ◽  
Shigeki Kimura ◽  
Michikazu Tanio ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document