scholarly journals Adsorption of dye molecules on metallic nanoparticles: Unraveling the origins of the modified spectral absorption

2021 ◽  
Author(s):  
◽  
Xiaohan Chen

<p>The enhanced optical response of molecules in the vicinity of metallic nanoparticle is the basis for many surface enhanced spectroscopies and of interest to the field of plasmonics. However, the mechanisms behind the enhancement are still a matter of debate because of the interplay between electromagnetic and chemical effects, which complicates the interpretation of spectral changes. Our ability to measure the surface absorption of dyes from very low coverage to high coverage allows us to identify the con- tribution of each effect (dye-dye interaction and dye-particle interaction) to the spectral modifications. In the course of this investigation, we also measured the adsorption isotherms of dyes in the presence of halide ions, which provides a detailed insight into the adsorption process on silver colloids.</p>

2021 ◽  
Author(s):  
◽  
Xiaohan Chen

<p>The enhanced optical response of molecules in the vicinity of metallic nanoparticle is the basis for many surface enhanced spectroscopies and of interest to the field of plasmonics. However, the mechanisms behind the enhancement are still a matter of debate because of the interplay between electromagnetic and chemical effects, which complicates the interpretation of spectral changes. Our ability to measure the surface absorption of dyes from very low coverage to high coverage allows us to identify the con- tribution of each effect (dye-dye interaction and dye-particle interaction) to the spectral modifications. In the course of this investigation, we also measured the adsorption isotherms of dyes in the presence of halide ions, which provides a detailed insight into the adsorption process on silver colloids.</p>


2021 ◽  
Vol 23 (1) ◽  
pp. 291
Author(s):  
Beata Tim ◽  
Paulina Błaszkiewicz ◽  
Michał Kotkowiak

Robust and versatile strategies for the development of functional nanostructured materials often focus on assemblies of metallic nanoparticles. Research interest in such assemblies arises due to their potential applications in the fields of photonics and sensing. Metallic nanoparticles have received considerable recent attention due to their connection to the widely studied phenomenon of localized surface plasmon resonance. For instance, plasmonic hot spots can be observed within their assemblies. A useful form of spectroscopy is based on surface-enhanced Raman scattering (SERS). This phenomenon is a commonly used in sensing techniques, and it works using the principle that scattered inelastic light can be greatly enhanced at a surface. However, further research is required to enable improvements to the SERS techniques. For example, one question that remains open is how to design uniform, highly reproducible, and efficiently enhancing substrates of metallic nanoparticles with high structural precision. In this review, a general overview on nanoparticle functionalization and the impact on nanoparticle assembly is provided, alongside an examination of their applications in surface-enhanced Raman spectroscopy.


Author(s):  
Anikate Sood ◽  
Shweta Agarwal

Nanotechnology is the most sought field in biomedical research. Metallic nanoparticles have wide applications in the medical field and have gained the attention of various researchers for advanced research for their application in pharmaceutical field. A variety of metallic nanoparticles like gold, silver, platinum, palladium, copper and zinc have been developed so far. There are different methods to synthesize metallic nanoparticles like chemical, physical, and green synthesis methods. Chemical and physical approaches suffer from certain drawbacks whereas green synthesis is emerging as a nontoxic and eco-friendly approach in production of metallic nanoparticles. Green synthesis is further divided into different approaches like synthesis via bacteria, fungi, algae, and plants. These approaches have their own advantages and disadvantages. In this article, we have described various metallic nanoparticles, different modes of green synthesis and brief description about different metabolites present in plant that act as reducing agents in green synthesis of metallic nanoparticles. 


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 899
Author(s):  
Fotis Pappas ◽  
Christos Palaiokostas

Incorporation of genomic technologies into fish breeding programs is a modern reality, promising substantial advances regarding the accuracy of selection, monitoring the genetic diversity and pedigree record verification. Single nucleotide polymorphism (SNP) arrays are the most commonly used genomic tool, but the investments required make them unsustainable for emerging species, such as Arctic charr (Salvelinus alpinus), where production volume is low. The requirement to genotype a large number of animals for breeding practices necessitates cost effective genotyping approaches. In the current study, we used double digest restriction site-associated DNA (ddRAD) sequencing of either high or low coverage to genotype Arctic charr from the Swedish national breeding program and performed analytical procedures to assess their utility in a range of tasks. SNPs were identified and used for deciphering the genetic structure of the studied population, estimating genomic relationships and implementing an association study for growth-related traits. Missing information and underestimation of heterozygosity in the low coverage set were limiting factors in genetic diversity and genomic relationship analyses, where high coverage performed notably better. On the other hand, the high coverage dataset proved to be valuable when it comes to identifying loci that are associated with phenotypic traits of interest. In general, both genotyping strategies offer sustainable alternatives to hybridization-based genotyping platforms and show potential for applications in aquaculture selective breeding.


Nanoscale ◽  
2015 ◽  
Vol 7 (40) ◽  
pp. 16952-16959 ◽  
Author(s):  
Kaige Zhang ◽  
Gongke Li ◽  
Yuling Hu

The surface-enhanced Raman spectroscopy (SERS) technique is of great importance for insight into the transient reaction intermediates and mechanistic pathways involved in heterogeneously catalyzed chemical reactions under actual reaction conditions, especially in water.


2009 ◽  
Vol 08 (01n02) ◽  
pp. 39-42 ◽  
Author(s):  
HIROSHI OGAWA ◽  
AKINORI TEZUKA ◽  
HAO WANG ◽  
TAMIO IKESHOJI ◽  
MASAHIKO KATAGIRI

Hydrogen storage in a metallic nanoparticle was simulated by classical molecular dynamics. Distribution of hydrogen atoms inside nanoparticle was investigated by changing length and energy parameters of metal– H bonds. Hydrogen atoms diffused into the particle and distributed homogeneously in case of weak metal– H bonds. In case of strong metal– H bonds, a hydrogen-rich surface layer was observed which suppresses the inward diffusion of hydrogen atoms. Structural modification of nanoparticle accompanied by grain boundary formation due to hydrogen loading was also observed. These variations in dynamical and structural features are considered to affect the hydrogen storage properties in nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document