scholarly journals Drivers of modern New Zealand glacier change

2021 ◽  
Author(s):  
◽  
Lauren Vargo

<p>Glaciers across the Southern Alps of New Zealand have been photographed annually since 1977, creating a rare record of Southern Hemisphere glacier change. Here, we revisit these historic photographs and use structure from motion photogrammetry to quantitatively measure glacier change from the images. To establish this new method, it is initially applied to Brewster Glacier (1670 – 2400 m a.s.l.), one of the 50 monitored glaciers. We derive annual equilibrium line altitude (ELA) and length records from 1981 – 2017, and quantify the uncertainties associated with the method. Our length reconstruction shows largely continuous terminus retreat of 365 ± 12 m for Brewster Glacier since 1981. The ELA record, which compares well with glaciological mass-balance data measured between 2005 and 2015, shows pronounced interannual variability. Mean ELAs range from 1707 ± 6 m a.s.l. to 2303 ± 5 m a.s.l. The newly developed ELA chronology from Brewster shows several years since 1981 with especially high mass loss, all of which occurred in the past decade. Investigation using reanalysis data shows that these extreme mass-loss years occur when surface air temperatures, sea surface temperatures, and mean sea level pressure are anomalously high. In particular, the three highest mass-loss years on record, 2011, 2016, and 2018, each had a 2-month mean surface air temperature anomaly of at least +1.7°C between November and March, which is exclusive to these three years over the time investigated (April 1980 – March 2018). Using event attribution — a methodology using climate model simulations with and without human-induced forcings to calculate the anthropogenic influence on extreme events — we calculate the anthropogenic influence on these surface air temperature anomalies. The positive temperature anomalies during extreme mass-loss years have probabilities of 0 – 90% confidence) more likely to occur with anthropogenic forcing, and in once case in 2018 could not have occurred (>90% confidence) without anthropogenic forcing. This increased likelihood is driven by present-day temperatures ~1.0°C above the pre-industrial average, confirming a connection between rising anthropogenic greenhouse gases, warming temperatures, and high annual ice loss.</p>

2021 ◽  
Author(s):  
◽  
Lauren Vargo

<p>Glaciers across the Southern Alps of New Zealand have been photographed annually since 1977, creating a rare record of Southern Hemisphere glacier change. Here, we revisit these historic photographs and use structure from motion photogrammetry to quantitatively measure glacier change from the images. To establish this new method, it is initially applied to Brewster Glacier (1670 – 2400 m a.s.l.), one of the 50 monitored glaciers. We derive annual equilibrium line altitude (ELA) and length records from 1981 – 2017, and quantify the uncertainties associated with the method. Our length reconstruction shows largely continuous terminus retreat of 365 ± 12 m for Brewster Glacier since 1981. The ELA record, which compares well with glaciological mass-balance data measured between 2005 and 2015, shows pronounced interannual variability. Mean ELAs range from 1707 ± 6 m a.s.l. to 2303 ± 5 m a.s.l. The newly developed ELA chronology from Brewster shows several years since 1981 with especially high mass loss, all of which occurred in the past decade. Investigation using reanalysis data shows that these extreme mass-loss years occur when surface air temperatures, sea surface temperatures, and mean sea level pressure are anomalously high. In particular, the three highest mass-loss years on record, 2011, 2016, and 2018, each had a 2-month mean surface air temperature anomaly of at least +1.7°C between November and March, which is exclusive to these three years over the time investigated (April 1980 – March 2018). Using event attribution — a methodology using climate model simulations with and without human-induced forcings to calculate the anthropogenic influence on extreme events — we calculate the anthropogenic influence on these surface air temperature anomalies. The positive temperature anomalies during extreme mass-loss years have probabilities of 0 – 90% confidence) more likely to occur with anthropogenic forcing, and in once case in 2018 could not have occurred (>90% confidence) without anthropogenic forcing. This increased likelihood is driven by present-day temperatures ~1.0°C above the pre-industrial average, confirming a connection between rising anthropogenic greenhouse gases, warming temperatures, and high annual ice loss.</p>


2019 ◽  
Vol 19 (15) ◽  
pp. 9903-9911
Author(s):  
Xin Hao ◽  
Shengping He ◽  
Huijun Wang ◽  
Tingting Han

Abstract. The East Asian winter monsoon (EAWM) is greatly influenced by many factors that can be classified as anthropogenic forcing and natural forcing. Here we explore the contribution of anthropogenic influence to the change in the EAWM over the past decades. Under all forcings observed during 1960–2013 (All-Hist run), the atmospheric general circulation model is able to reproduce the climatology and variability of the EAWM-related surface air temperature and 500 hPa geopotential height and shows a statistically significant decreasing EAWM intensity with a trend coefficient of ∼-0.04 yr−1, which is close to the observed trend. By contrast, the simulation, which is driven by the same forcing as the All-Hist run but with the anthropogenic contribution to them removed, shows no decreasing trend in the EAWM intensity. By comparing the simulations under two different forcing scenarios, we further reveal that the responses of the EAWM to the anthropogenic forcing include a rise of 0.6∘ in surface air temperature over East Asia as well as weakening of the East Asian trough, which may result from the poleward expansion and intensification of the East Asian jet forced by the change in temperature gradient in the troposphere. Additionally, compared with the simulation without anthropogenic forcing, the frequency of strong (weak) EAWM occurrence is reduced (increased) by 45 % (from 0 to 10/7). These results indicate that the weakening of the EAWM during 1960–2013 may be mainly attributed to the anthropogenic influence.


2019 ◽  
Author(s):  
Xin Hao ◽  
Shengping He ◽  
Huijun Wang ◽  
Tingting Han

Abstract. The East Asian winter monsoon (EAWM) can be greatly influenced by many factors that can be classified as anthropogenic forcing and natural forcing. Here we explore the contribution of anthropogenic influence to the change in the EAWM over the past decades. Under all forcings observed during 1960–2013 (All-Hist run), the atmospheric general circulation model is able to reproduce the climatology and variability of the EAWM-related surface air temperature and 500 hPa geopotential height, and shows a statistically significant decreasing EAWM intensity with a trend coefficient of ∼−0.04 yr−1 which is close to the observed trend. By contrast, the simulation, which is driven by the same forcing as All-Hist run but with the anthropogenic contribution to them removed, shows no decreasing trend in the EAWM intensity. By comparing the simulations under two different forcing scenarios, we further reveal that the responses of the EAWM to the anthropogenic forcing include a rise of 0.6 ° in surface air temperature over the East Asia as well as weakening of the East Asia trough, which may result from the poleward expansion and intensification of the East Asian jet forced by the change of temperature gradient in the troposphere. Additionally, compared with the simulation without anthropogenic forcing, the frequency of strong (weak) EAWM occurrence is reduced (increased) by 45 % (from 0 to 10/7). These results indicate that the weakening of the EAWM during 1960–2013 may be mainly attributed to the anthropogenic influence.


2011 ◽  
Vol 24 (2) ◽  
pp. 569-574 ◽  
Author(s):  
Jean O. Dickey ◽  
Steven L. Marcus ◽  
Olivier de Viron

Abstract Earth’s rotation rate [i.e., length of day (LOD)], the angular momentum of the core (CAM), and surface air temperature (SAT) all have decadal variability. Previous investigators have found that the LOD fluctuations are largely attributed to core–mantle interactions and that the SAT is strongly anticorrelated with the decadal LOD. It is shown here that 1) the correlation among these three quantities exists until 1930, at which time anthropogenic forcing becomes highly significant; 2) correcting for anthropogenic effects, the correlation is present for the full span with a broadband variability centered at 78 yr; and 3) this result underscores the reality of anthropogenic temperature change, its size, and its temporal growth. The cause of this common variability needs to be further investigated and studied. Since temperature cannot affect the CAM or LOD to a sufficient extent, the results favor either a direct effect of Earth’s core-generated magnetic field (e.g., through the modulation of charged-particle fluxes, which may impact cloud formation) or a more indirect effect of some other core process on the climate—or yet another process that affects both. In all three cases, their signals would be much smaller than the anthropogenic greenhouse gas effect on Earth’s radiation budget during the coming century.


2008 ◽  
Vol 14 ◽  
pp. 243-249 ◽  
Author(s):  
J. Kyselý ◽  
R. Huth

Abstract. Heat waves are among natural hazards with the most severe consequences for human society, including pronounced mortality impacts in mid-latitudes. Recent studies have hypothesized that the enhanced persistence of atmospheric circulation may affect surface climatic extremes, mainly the frequency and severity of heat waves. In this paper we examine relationships between the persistence of the Hess-Brezowsky circulation types conducive to summer heat waves and air temperature anomalies at stations over most of the European continent. We also evaluate differences between temperature anomalies during late and early stages of warm circulation types in all seasons. Results show that more persistent circulation patterns tend to enhance the severity of heat waves and support more pronounced temperature anomalies. Recent sharply rising trends in positive temperature extremes over Europe may be related to the greater persistence of the circulation types, and if similar changes towards enhanced persistence affect other mid-latitudinal regions, analogous consequences and implications for temperature extremes may be expected.


2021 ◽  
pp. 1-47

Abstract Key processes associated with the leading intraseasonal variability mode of wintertime surface air temperature (SAT) over Eurasia and the Arctic region are investigated in this study. Characterized by a dipole distribution in SAT anomalies centered over north Eurasia and the Arctic, respectively, and coherent temperature anomalies vertically extending from the surface to 300hPa, this leading intraseasonal SAT mode and associated circulation have pronounced influences on global surface temperature anomalies including the East Asian winter monsoon region. By taking advantage of realistic simulations of the intraseasonal SAT mode in a global climate model, it is illustrated that temperature anomalies in the troposphere associated with the leading SAT mode are mainly due to dynamic processes, especially via the horizontal advection of winter mean temperature by intraseasonal circulation. While the cloud-radiative feedback is not critical in sustaining the temperature variability in the troposphere, it is found to play a crucial role in coupling temperature anomalies at the surface and in the free-atmosphere through anomalous surface downward longwave radiation. The variability in clouds associated with the intraseasonal SAT mode is closely linked to moisture anomalies generated by similar advective processes as for temperature anomalies. Model experiments suggest that this leading intraseasonal SAT mode can be sustained by internal atmospheric processes in the troposphere over the mid-to-high latitudes by excluding forcings from Arctic sea ice variability, tropical convective variability, and the stratospheric processes.


Sign in / Sign up

Export Citation Format

Share Document