scholarly journals PROCESSING OF A POLYMER COMPOSITION BASED ON SECONDARY POLYCAPROAMIDE BY INSURANCE CASTING

Author(s):  
Vladimir N. Tretyakov ◽  
Sergei D. Evmenov
Keyword(s):  
2012 ◽  
Vol 8 (1) ◽  
pp. 63
Author(s):  
Carlo Zivelonghi ◽  
Giulia Geremia ◽  
Michele Pighi ◽  
Flavio Ribichini ◽  
◽  
...  

Each component of a drug-eluting stent (DES) contributes to the safety of the device. Continuous efforts are being dedicated to the search of the optimal compromise between facility of use, safety and long-term efficacy. Shorter balloons reduce the vascular trauma beyond the stent struts; the metallic composition of the stent platform and the platform itself interact with the vascular wall in a long-lasting equilibrium between radial force, vessel patency and reparative cellular regrowth. The modality of drug elution is largely regulated by the chosen drug carrier, rather than by the chemical properties of the drug itself. Drug elution can be accomplished by permanent polymers that remain in the vessel wall forever, by biodegradable polymers that leave the naked metallic structure behind after their complete absorption, or even by direct release of the drug from stent reservoirs. The clinical performance of DESs has been exhaustively assessed in a large number of studies that have showed rapid and continuous improvements, from the first-generation DESs to the latest devices, based on substantial changes in stent design and polymer composition.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sebastian Teichert ◽  
Martin G. J. Löder ◽  
Ines Pyko ◽  
Marlene Mordek ◽  
Christian Schulbert ◽  
...  

AbstractThere is an increasing number of studies reporting microplastic (MP) contamination in the Arctic environment. We analysed MP abundance in samples from a marine Arctic ecosystem that has not been investigated in this context and that features a high biodiversity: hollow rhodoliths gouged by the bivalve Hiatella arctica. This bivalve is a filter feeder that potentially accumulates MPs and may therefore reflect MP contamination of the rhodolith ecosystem at northern Svalbard. Our analyses revealed that 100% of the examined specimens were contaminated with MP, ranging between one and 184 MP particles per bivalve in samples from two water depths. Polymer composition and abundance differed strongly between both water depths: samples from 40 m water depth showed a generally higher concentration of MPs and were clearly dominated by polystyrene, samples from 27 m water depth were more balanced in composition, mainly consisting of polyethylene, polyethylene terephthalate, and polypropylene. Long-term consequences of MP contamination in the investigated bivalve species and for the rhodolith bed ecosystem are yet unclear. However, the uptake of MPs may potentially impact H. arctica and consequently its functioning as ecosystem engineers in Arctic rhodolith beds.


2020 ◽  
Vol 6 (3) ◽  
pp. 155-158
Author(s):  
Katharina Wulf ◽  
Volkmar Senz ◽  
Thomas Eickner ◽  
Sabine Illner

AbstractIn recent years, nanofiber based materials have emerged as especially interesting for several biomedical applications, regarding their high surface to volume ratio. Due to the superficial nano- and microstructuring and the different wettability compared to nonstructured surfaces, the water absorption is an important parameter with respect to the degradation stability, thermomechanic properties and drug release properties, depending on the type of polymer [1]. In this investigation, the water absorption of different non- and plasma modified biostable nanofiber nonwovens based on polyurethane, polyester and polyamide were analysed and compared. Also, the water absorption by specified water wetting, the contact angle and morphology changes were examined. The results show that the water uptake is highly dependent on the surface modification and the polymer composition itself and can therefore be partially changed.


2002 ◽  
Vol 35 (7) ◽  
pp. 2506-2513 ◽  
Author(s):  
Aggeliki I. Triftaridou ◽  
Stella C. Hadjiyannakou ◽  
Maria Vamvakaki ◽  
Costas S. Patrickios
Keyword(s):  

2011 ◽  
Vol 89 (3) ◽  
pp. 317-325 ◽  
Author(s):  
Binxin Li ◽  
Daniel Majonis ◽  
Peng Liu ◽  
Mitchell A. Winnik

We describe the synthesis of an end-functionalized copolymer of N-(2-hydroxypropyl)methacrylamide (HPMA) and N-hydroxysuccinimide methacrylate (NMS) by reversible addition–fragmentation chain transfer (RAFT) polymerization. To control the polymer composition, the faster reacting monomer (NMS) was added slowly to the reaction mixture beginning 30 min after initating the polymerization (ca. 16% HPMA conversion). One RAFT agent, based on azocyanopentanoic acid, introduced a –COOH group to the chain at one end. Use of a different RAFT agent containing a 4-amino-1,8-naphthalimide dye introduced a UV–vis absorbing and fluorescent group at this chain end. The polymers obtained had molecular weights of 30 000 and 20 000, respectively, and contained about 30 mol% NMS active ester groups.


1962 ◽  
Vol 35 (4) ◽  
pp. 1114-1125 ◽  
Author(s):  
E. K. Gladding ◽  
B. S. Fisher ◽  
J. W. Collette

Abstract The composition of sulfur-curable elastomers derived from olefins and diolefins is described and methods are given for their synthesis using coordination catalysts. Certain factors that influence the laboratory-scale polymer synthesis are discussed and the effects of catalyst type, polymerization temperature, and diene structure on the rate of polymer formation and polymer composition are outlined. Polymer properties are discussed in general terms, with particular emphasis on oxidative stability.


2021 ◽  
Vol 5 ◽  
pp. 76-81
Author(s):  
N.I. Kurbanova ◽  
◽  
S. K. Ragimova ◽  
N. A. Alimirzoeva ◽  
N. Ya. Ishenko ◽  
...  

The influence of additives of nanofillers (NF) containing nanoparticles of copper oxides stabilized by a polymer matrix of high-pressure polyethylene (PE) obtained by the mechanochemical method on the structure and properties features of metal-containing nanocomposites based on isotactic polypropylene (PP) and butadiene-nitrile rubber (BNK) is studied by X-ray phase (XRD) and differential thermal analyses(DTA). The improvement of strength, deformation and rheological parameters, as well as thermal-oxidative stability of the obtained nanocomposites was revealed, which, apparently, is associated with the synergistic effect of interfacial interaction of copper-containing nanoparticles in the PE matrix with the components of the PP/BNK polymer composition. It is shown that nanocomposites based on PP/BNK/NF can be processed both by pressing method and by injection molding and extrusion methods, which expands the scope of its application.


2009 ◽  
Vol 52 (1) ◽  
pp. 157-162 ◽  
Author(s):  
Antonio Zenon Antunes Teixeira

The aim of this study was to attain 100% drug release of caffeine after 24 h from hydroxypropylcellulose (HPC) tablet matrices and to investigate the effect of co-excipient. Physical properties of the powders were evaluated and suggested for a wet granulation process. The tablet containing caffeine was formulated by different weight ratios of hydrophilic polymers. The results of polymer evaluation confirmed that the increase of HPC level with the same drug content significantly decreased the rate of drug release. The presence of co-polymer excipients carboxymethylcellulose (CMC) and polyvinylpyrrolidone (PVP) in the tablet matrix was also investigated. The release rate was also controlled by low levels of CMC (<10%) while PVP did not show any considerably effect. The best fit release rate 100% at 24 h was obtained when 10% of α-lactose monohydrate was added to the formulation.


Sign in / Sign up

Export Citation Format

Share Document