FUNCTIONAL METHODS OF EARLY DIAGNOSTICS OF AGE MACULAR DEGENERATION.(LITERATURE REVIEW)

2021 ◽  
Vol Special issue (2) ◽  
pp. 61-67
Author(s):  
Azamat Yusupov ◽  
◽  
Mukhiddin Ziyoviddinov ◽  
Shavkat Mukhanov ◽  
O.O. Sobirov

This article provides an unsystematic literature review devoted to analyzing the currently existing methods of functional diagnostics for age-related macular degeneration.The essence, advantages and disadvantages, and literature data on the use of such methods asphotostresstest, electrooculography, dark adaptation study, contrast sensitivity function assessment, light and color sensitivity study,electroretinographyand critical flicker fusion frequencyare described.Based on the analysis of literature data, itis shownthat currently, there is a need to searchfor informative and accessible methods of functional diagnostics in age-related macular degeneration, especially for its early diagnosis. The analysis has shown that the existing methods are mainly aimed either at fixing secondary morphological changes in the layer of pigment epithelial cells, at identifying the pathology of the pigment epithelium in conjunction with determining the function of photoreceptor elements, or at a comprehensive assessment of the structures of several layers of the retina. Keywords:age-related macular degeneration; methods of functional diagnostics; photostress test; electrooculography; contrast sensitivity

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 245 ◽  
Author(s):  
Francesco Bandello ◽  
Riccardo Sacconi ◽  
Lea Querques ◽  
Eleonora Corbelli ◽  
Maria Vittoria Cicinelli ◽  
...  

Age-related macular degeneration (AMD), the most important cause of vision loss in elderly people, is a degenerative disorder of the central retina with a multifactorial etiopathology. AMD is classified in dry AMD (d-AMD) or neovascular AMD depending on the presence of choroidal neovascularization. Currently, no therapy is approved for geographic atrophy, the late form of d-AMD, because no treatment can restore the damage of retinal pigment epithelium (RPE) or photoreceptors. For this reason, all treatment approaches in d-AMD are only likely to prevent and slow down the progression of existing atrophy. This review focuses on the management of d-AMD and especially on current data about potential targets for therapies evaluated in clinical trials. Numerous examinations are available in clinics to monitor morphological changes in the retina, RPE and choroid of d-AMD patients. Fundus autofluorescence and optical coherence tomography (OCT) are considered the most useful tools in the diagnosis and follow-up of d-AMD alterations, including the monitoring of atrophy area progression. Instead, OCT-angiography is a novel imaging tool that may add further information in patients affected by d-AMD. Several pathways, including oxidative stress, deposits of lipofuscin, chronic inflammation and choroidal blood flow insufficiency, seem to play an important role in the pathogenesis of d-AMD and represent possible targets for new therapies. A great number of treatments for d-AMD are under investigation with promising results in preliminary studies. However, only few of these drugs will enter the market, offering a therapeutic chance to patients affected by the dry form of AMD and help them to preserve a good visual acuity. Further studies with a long-term follow-up would be important to test the real safety and efficacy of drugs under investigation.


2021 ◽  
Vol 6 (1) ◽  
pp. e000774
Author(s):  
Minwei Wang ◽  
Shiqi Su ◽  
Shaoyun Jiang ◽  
Xinghuai Sun ◽  
Jiantao Wang

Age-related macular degeneration (AMD) is the most common eye disease in elderly patients, which could lead to irreversible vision loss and blindness. Increasing evidence indicates that amyloid β-peptide (Aβ) might be associated with the pathogenesis of AMD. In this review, we would like to summarise the current findings in this field. The literature search was done from 1995 to Feb, 2021 with following keywords, ‘Amyloid β-peptide and age-related macular degeneration’, ‘Inflammation and age-related macular degeneration’, ‘Angiogenesis and age-related macular degeneration’, ‘Actin cytoskeleton and amyloid β-peptide’, ‘Mitochondrial dysfunction and amyloid β-peptide’, ‘Ribosomal dysregulation and amyloid β-peptide’ using search engines Pubmed, Google Scholar and Web of Science. Aβ congregates in subretinal drusen of patients with AMD and participates in the pathogenesis of AMD through enhancing inflammatory activity, inducing mitochondrial dysfunction, altering ribosomal function, regulating the lysosomal pathway, affecting RNA splicing, modulating angiogenesis and modifying cell structure in AMD. The methods targeting Aβ are shown to inhibit inflammatory signalling pathway and restore the function of retinal pigment epithelium cells and photoreceptor cells in the subretinal region. Targeting Aβ may provide a novel therapeutic strategy for AMD.


2021 ◽  
Vol 22 (16) ◽  
pp. 8387
Author(s):  
Alexa Klettner ◽  
Johann Roider

(1) Background: Inflammation is a major pathomechanism in the development and progression of age-related macular degeneration (AMD). The retinal pigment epithelium (RPE) may contribute to retinal inflammation via activation of its Toll-like receptors (TLR). TLR are pattern recognition receptors that detect the pathogen- or danger-associated molecular pattern. The involvement of TLR activation in AMD is so far not understood. (2) Methods: We performed a systematic literature research, consulting the National Library of Medicine (PubMed). (3) Results: We identified 106 studies, of which 54 were included in this review. Based on these studies, the current status of TLR in AMD, the effects of TLR in RPE activation and of the interaction of TLR activated RPE with monocytic cells are given, and the potential of TLR activation in RPE as part of the AMD development is discussed. (4) Conclusion: The activation of TLR2, -3, and -4 induces a profound pro-inflammatory response in the RPE that may contribute to (long-term) inflammation by induction of pro-inflammatory cytokines, reducing RPE function and causing RPE cell degeneration, thereby potentially constantly providing new TLR ligands, which could perpetuate and, in the long run, exacerbate the inflammatory response, which may contribute to AMD development. Furthermore, the combined activation of RPE and microglia may exacerbate neurotoxic effects.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 64
Author(s):  
Annamaria Tisi ◽  
Marco Feligioni ◽  
Maurizio Passacantando ◽  
Marco Ciancaglini ◽  
Rita Maccarone

The blood retinal barrier (BRB) is a fundamental eye component, whose function is to select the flow of molecules from the blood to the retina and vice-versa, and its integrity allows the maintenance of a finely regulated microenvironment. The outer BRB, composed by the choriocapillaris, the Bruch’s membrane, and the retinal pigment epithelium, undergoes structural and functional changes in age-related macular degeneration (AMD), the leading cause of blindness worldwide. BRB alterations lead to retinal dysfunction and neurodegeneration. Several risk factors have been associated with AMD onset in the past decades and oxidative stress is widely recognized as a key factor, even if the exact AMD pathophysiology has not been exactly elucidated yet. The present review describes the BRB physiology, the BRB changes occurring in AMD, the role of oxidative stress in AMD with a focus on the outer BRB structures. Moreover, we propose the use of cerium oxide nanoparticles as a new powerful anti-oxidant agent to combat AMD, based on the relevant existing data which demonstrated their beneficial effects in protecting the outer BRB in animal models of AMD.


2021 ◽  
pp. 116-123
Author(s):  
Leonie F. Keidel ◽  
Benedikt Schworm ◽  
Siegfried G. Priglinger ◽  
Jakob Siedlecki

Nonresponse of neovascular age-related macular degeneration (nAMD) to anti-vascular endothelial growth factor (anti-VEGF) therapy can often be attributed to misdiagnosis, and pathologies mimicking AMD might require different therapeutic concepts. In the following, we want to outline a case of presumed nAMD which revealed to be pachychoroid neovasculopathy (PNV) and was successfully treated by the addition of spironolactone. A 67-year-old female patient was referred for nonresponse of nAMD on her left eye after 29 intravitreal injections of aflibercept with no complete resolution of subretinal fluid. On fundoscopy, both maculae presented with pigment epithelium alterations, while the left eye showed subretinal fluid on optical coherence tomography (OCT) with an associated pigment epithelium detachment, which revealed to contain a neovascular network on OCT angiography. There was faint leakage on fluorescence (FAG) and indocyanine green angiography (ICGA) and some focal vascular dilation of the neovascular network on ICGA. Due to the absence of Drusen on any eye, a thick choroid, and the presence of a gravitational tract on blue autofluorescence (BAF), chronic central serous chorioretinopathy with a choroidal neovascularization, defined as PNV in the pachychoroid disease was diagnosed. Upon the addition of spironolactone to anti-VEGF treatment, choroidal thickness significantly decreased, and subretinal fluid resolution was observed and maintained for the first time. In conclusion, PNV should be ruled out in cases of presumed nAMD nonresponding to anti-VEGF. In these cases, a combination therapy of anti-VEGF and mineralocorticoid antagonists can facilitate fluid resorption.


Sign in / Sign up

Export Citation Format

Share Document