scholarly journals Production of Abrasive Sandpaper using Periwinkle Shells and Crab Shells

Author(s):  
YUSUF LANRE SHUAIB-BABATA ◽  
Ibrahim Owolabi Ambali ◽  
Lawal Babatunde Abdulqadir ◽  
Hassan Kobe Ibrahim ◽  
Ishaq Na’allah Aremu ◽  
...  

In this study, the abrasive properties of periwinkle shell and crab shell grains with the binding effect of polyester resin at high concentration were evaluated. The abrasive properties considered were the hardness, compressive strength and wear resistance. The shells were processed into grit standards by crushing, grinding and then sieving using ASTM E11 set of sieves into grain sizes of P40 and P60. Furthermore on, the grits were developed into polymer matrix composite with particles varying from 96 wt.% to 92 wt.% and resin 3 wt.% to 7 wt.% with 1 wt.% each of cobalt naphthalene and methyl ethyl ketone peroxide hardener respectively by mixing and mold compression using a hydraulic press. It was found that, with an increase in polyester resin content, the hardness and compressive strength increased, while the wear rate decreased. The composition with most improved abrasive properties was 92 wt.% periwinkle shell grains to 7 wt.% polyester resin.

2021 ◽  
Vol 5 (1) ◽  
pp. 339-346
Author(s):  
Sunday Gbenga Borisade ◽  
Olatunde Ajani Oyelaran ◽  
James Abioye

This study is focused on development of an eco-friendly abrasive sandpaper using walnut shell (WS) with the binding effect of epoxy resin on WS, iron oxide and silica, calcium carbonate (CaCO3) and pulverized graphite. The method of mixing and mould compression using a hydraulic press matrix composite with five varying composition was used. The compositions were made by varying  the weight of WS, epoxy resin with that of iron oxide and silica, calcium carbonate and pulverized graphite were left constant expressed in percentage weight The abrasive properties investigated were density, compressive strength and wear resistance and water and oil absorption rate. The results reveals obtained that the density, wear resistance rate and compressive strength of the tested composition decreases with increasing WS content despite the fact the rate water absorption increases with increasing WS. The result of obtained reveals that WS can be utilized in the production of abrasive sandpaper


2019 ◽  
Vol 69 (333) ◽  
pp. 178 ◽  
Author(s):  
C. Conde-Vázquez ◽  
O. De Miguel-San Martín ◽  
G. García-Herbosa

An artificial arenite was developed from the waste of the sandstone industry. The waste sandstone was treated to obtain different grain sizes that were recombined to reproduce the natural texture. An unsaturated polyester resin was added to the mixture of grains and the cement polymerization was initiated with methyl ethyl ketone peroxide. The product was compacted under pressure of 1.5 to 9.7 MPa and cured at 70 °C. The result was a new material with the appearance of the natural rock. Artificial sandstones were studied by SEM microanalysis, petrography study and XRF analysis. Measurements of flexural strength (9.9 MPa), apparent density (2110 kg/cm3), open porosity (7.6%), water absorption (1.2%), abrasion resistance (19 mm) and photostability (AE * = - 0.009) were carried out. The influence of the design of the mixture and its composition (fraction of aggregates, resin content and pressure) on the texture and the mechanical properties was studied.


2020 ◽  
Vol 108 (2) ◽  
pp. 203
Author(s):  
Samia Djadouf ◽  
Nasser Chelouah ◽  
Abdelkader Tahakourt

Sustainable development and environmental challenges incite to valorize local materials such as agricultural waste. In this context, a new ecological compressed earth blocks (CEBS) with addition of ground olive stone (GOS) was proposed. The GOS is added as partial clay replacement in different proportions. The main objective of this paper is to study the effect of GOS levels on the thermal properties and mechanical behavior of CEB. We proceeded to determining the optimal water content and equivalent wet density by compaction using a hydraulic press, at a pressure of 10 MPa. The maximum compressive strength is reached at 15% of the GOS. This percentage increases the mechanical properties by 19.66%, and decreases the thermal conductivity by 37.63%. These results are due to the optimal water responsible for the consolidation and compactness of the clay matrix. The substitution up to 30% of GOS shows a decrease of compressive strength and thermal conductivity by about 38.38% and 50.64% respectively. The decrease in dry density and thermal conductivity is related to the content of GOS, which is composed of organic and porous fibers. The GOS seems promising for improving the thermo-mechanical characteristics of CEB and which can also be used as reinforcement in CEBS.


2013 ◽  
Vol 687 ◽  
pp. 185-190 ◽  
Author(s):  
Masoud Jamshidi ◽  
Mohammad Javad Ghasemi ◽  
Abdolreza Hashemi

Polymer concretes (PC) were introduced to building and construction industry more than 50 years ago. Gradually, they became a suitable substitute for concrete structures. Their superior properties againt aggresives introduced them as a good overlay for concrete structures; however, their application was shortly diminished due to the higher costs. In this research a homemade cost-quality effective resin (unsaturated polyester) is used as binder in the polymer concrete production. Polymer concrete specimens were evaluated for compressive strength and its fluctuation due to cyclic exposure to different aggresive solutions (sulfuric acid, nitric acid, citric acid, chloridric acid, sodum sulfate, water, demineralized water, sodium hydroxid, potasium hydroxid and gas oil). It was found that PC specimens degraded more in alkali conditioned in comparison to acid solutions.


Author(s):  
Д. С. НОВАК ◽  
Н. М. БЕРЕЗНЕНКО ◽  
А. А. СЕРЕДЕНКО ◽  
О. Г. ПІЩУЛІН

Purpose. Establishment of the influence of the content of sand and modifying additives on the hardness, compressive strength, and impact strength of polymer concrete compositions. Methodology. Polymer concrete compositions in the form of round pancakes, sticks and bars based on polyester resin of the CHROMOPLAST GP 2000 brand, hardener (organic peroxide for cold curing) of the Luperox K1 brand, cobalt stearate (cobalt salt of stearic acid), styrene and river sand were subject of investigation. Samples of polymer concrete composites were obtained in two stages: 1) mixing the resin with sand 2) the addition of hardener, styrene and cobalt stearate. To obtain a hardened polyester composition, metal forms with bent sides were used; ceramic boats (not enameled) metal molds 2 cm high. Preparation of the composition was carried out in the following sequence: first, resin was mixed with sand, then hardener, cobalt stearate and styrene were added. The following sequence of preparation of the composition also took place: first the resin and hardener were mixed, only then sand mixed with styrene and cobalt stearate was added. The forms were loaded into a heating cabinet and heated to a temperature of 100 °C for 30-40 minutes. After cooling in the form of the product was removed. The hardness, compressive strength and toughness of the developed compositions were investigated by standard methods. Results. It was found that an increase in sand content from 0 to 90% of the mass. in polymer concrete compositions leads to an increase in hardness by ~ 466%, as well as a decrease in compressive strength by ~ 62% and impact strength by ~ 50%. Scientific novelty. An increase in the hardness index and a decrease in the compressive strength and toughness of polymer concrete compositions with an increase in the sand content to 90 % of the mass was established. This is because the sand has a higher hardness than the polyester resin, and accordingly, an increase in its content leads to an increase in the hardness of the composition. The decrease in compressive strength and toughness is due to a decrease in the amount of binder, due to which the composition becomes more fragile. Practical value. The developed polymer concrete compositions can be used in construction, as well as for repairing damaged concrete surfaces and eliminating cracks.


2018 ◽  
Vol 7 (2) ◽  
pp. 149-155 ◽  
Author(s):  
Masturi Masturi ◽  
Suhardi Effendy ◽  
Afrianus Gelu ◽  
Hammam Hammam ◽  
Fianti Fianti

The growth of the manufacturing industry in Indonesia affects on the demand of automotive parts. This study aims see the mechanical properties of organic brake canvas made from durian fruit skin and teak leaves. Composite making was done by smoothing durian fruit and teak leaves to become powder. The resulting powder was filtered with mesh 60 so that the particle size is the same so as to facilitate mixing. After that, simple mixing with other ingredients such as magnesium oxide and polyester resin is carried out. The printing process was carried out with a hydraulic press with a load of 4 tons for 3 hours. The brake canvas produced were tested for hardness, wear resistance, and absorbency by varying the percentage composition of the powder of durian fruit fiber and teak leaves. There are five variations in the percentage of composite material composition tested. The results obtained the percentage of the most optimum composition that has a value of hardness, wear wear resistance, and absorption capacity close to the value of the Indonesian National Standard (SNI 09-0143).


2021 ◽  
Vol 32 (4) ◽  
pp. 555-560
Author(s):  
Samirah ◽  
Aniek Setiya Budiatin ◽  
Ferdiansyah Mahyudin ◽  
Junaidi Khotib

Abstract Objectives Alendronate are widely used in the treatment of bone disorders characterized by inhibit osteoclast-mediated bone resorption such as Paget’s disease, fibrous dysplasia, myeloma, bone metastases and osteoporosis. In recent studies alendronate improves proliferation and differentiation of osteoblasts, thereby facilitating for bone regeneration. The disadvantages of this class are their poor bioavailability and side effects on oral and intravenous application such as stomach irritation and osteonecrosis in jaw. Thus, local treatment of alendronate is needed in order to achieve high concentration of drug. Bovine hydroxyapatite-gelatin scaffold with alendronate was studied. Glutaraldehyde was used as cross-linking agent, increase the characteristics of this scaffold. The objectives of this study were to manufacture and characterize alendronate scaffold using bovine hydroxyapatite-gelatin and crosslinked by glutaraldehyde. Methods Preparation of cross-linked bovine hydroxyapatite-gelatin and alendronate scaffold with different concentration of glutaraldehyde (0.00, 0.50, 0.75, and 1.00%). The scaffolds were characterized for compressive strength, porosity, density, swelling ratio, in vitro degradation, and cytotoxicity (the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay, shorted as MTT assay). Results Bovine hydroxyapatite-gelatin-alendronate scaffold cross-linked with glutaraldehyde showed lower density than without glutaraldehyde. As glutaraldehyde concentration increased, porosity also increased. Eventually, it reduced compressive strength. Swelling ratio and in vitro degradation was negatively dependent on glutaraldehyde concentration. In addition, the scaffold has a good safety by MTT assay. Conclusions Bovine hydroxyapatite-gelatin-alendronate scaffold was fabricated with various concentrations of glutaraldehyde. The presence of glutaraldehyde on bovine hydroxyapatite-gelatin-alendronate is safe and suitable candidate scaffold for bone regeneration.


Author(s):  
Balázs Czinder ◽  
Ákos Török

Abstract Aggregates are necessary materials for the construction industry. Owing to their favourable properties, andesites are frequently used rock materials; hence, the investigation of their mechanical and aggregate properties has great significance. This paper introduces the analyses of 13 Hungarian andesite lithotypes. The samples were collected from six andesite quarries in Hungary. Cylindrical specimens and aggregate samples with 10.0/14.0-mm-sized grains were made from rock blocks. The specimens were tested in dry, water-saturated and freeze–thaw subjected conditions. Bulk density, uniaxial compressive strength, modulus of elasticity, indirect tensile strength and water absorption were measured. The abrasion resistance was tested by micro-Deval tests. The flakiness indexes of the samples were also measured. The data set of the laboratory test results provided input for further, one- and two-variable statistical analyses. According to the test results, there is no significant difference between the strength parameters measured in water-saturated and in freeze–thaw subjected conditions. The correlation and regression analyses revealed relationships between some rock mechanical parameters, as well as between micro-Deval coefficient and uniaxial compressive strength.


2019 ◽  
Vol 169 ◽  
pp. 82-87
Author(s):  
Penghao Tian ◽  
Chao Wang ◽  
Mingyang Yang ◽  
Junbo Zhou

Sign in / Sign up

Export Citation Format

Share Document