Study of the elastic properties of hexagonal metal single crystals

2019 ◽  
Vol 85 (9) ◽  
pp. 29-35
Author(s):  
V. V. Krasavin ◽  
A. V. Krasavin

Hexagonal metals (e.g., Be, Zr, Ti) are widely used in the nuclear industry, space and aircraft engineering (in manufacturing of the structural elements operating under extreme conditions). A promising way to improve the quality of products made of them is to improve the physical properties of materials using the natural anisotropy of metal single crystals. The results of studying anisotropy and a comparative analysis of the technical characteristics of the elastic properties of single crystals of hexagonal metals are presented. The equations of the elastic compliance matrix components are derived in the explicit form for arbitrary crystallographic direction proceeding from transformations of the elastic compliance tensor in the principal axes to a new arbitrary coordinate system with a subsequent use of Euler angles. Analytical expressions are presented for the technical characteristics of the elastic properties (shear and Young's moduli, Poisson's ratio) of the single crystals of 10 hep metals for an arbitrary crystallographic direction. The axial symmetry of the characteristics about the hexagonal axis is revealed. The sums of the elastic compliance coefficients which determine the shear moduli and the Poisson's ratios in two mutually perpendicular directions are constant in any crystallographic plane of the single crystal. A comparative analysis of the anisotropy of the elastic properties of single crystals of the studied group of metals revealed auxetic properties of Zn and Be single crystals and the region of crystallographic directions of uniaxia tension, leading to an auxetic effect The auxetic effect in Zn was observed under tension in the directions of the plane perpendicular to the hexagonal axis of the single crystal. The planes of the auxetic effect manifestation in Be single crystals are perpendicular to the directions making an angle of 45° with the hexagonal axis.

The influence of very small quantities of impurity on the critical shear stress of metal single crystals has an important bearing on the mechanism of their plastic deformation. For investigations in this field, mercury is a very suitable metal: its impurity content can easily be reduced to an extremely low level (Hulett 1911) and it contains no dissolved gases (Hulett 1911). Also, as first pointed out by Andrade (1914), single crystal wires of this metal can be prepared without difficulty. The low melting point of mercury (-38∙8° C.) is far from being a disadvantage. The crystals can be maintained at -60° C., and at a temperature so near the melting point the thermal agitation may be expected to accentuate phenomena not observable at lower temperatures, if such agitation plays the important part in the mechanism of glide ascribed to it (Taylor 1934; Polanyi 1934; Orowan 1934). As a possible instance of this, the experiments to be described have revealed the existence of a preliminary “set” preceding the true plastic yield. Widely differing forms of slip band have also been observed, and are described elsewhere (Greenland 1937). It is hoped that these results will throw further light on the mechanism of glide.


2007 ◽  
Vol 26-28 ◽  
pp. 221-224 ◽  
Author(s):  
C. Wang ◽  
Katsushi Tanaka ◽  
Kyosuke Kishida ◽  
Haruyuki Inui

The temperature dependence of single-crystal elastic constants of L10-ordered single-crystals of FePd . A complete set of elastic constants has been determined with the resonance ultrasound spectroscopy technique. The compounds clearly show a tetragonal elastic anisotropy, c11 < c33 and c44 < c66. The temperature dependencies of the anisotropies are not simply explained by the variation of axial ratio (c/a) of the crystal.


Author(s):  
M.E. Lee

The crystalline perfection of bulk CdTe substrates plays an important role in their use in infrared device technology. The application of chemical etchants to determine crystal polarity or the density and distribution of crystallographic defects in (100) CdTe is not well understood. The lack of data on (100) CdTe surfaces is a result of the apparent difficulty in growing (100) CdTe single crystal substrates which is caused by a high incidence of twinning. Many etchants have been reported to predict polarity on one or both (111) CdTe planes but are considered to be unsuitable as defect etchants. An etchant reported recently has been considered to be a true defect etchant for CdTe, MCT and CdZnTe substrates. This etchant has been reported to reveal crystalline defects such as dislocations, grain boundaries and inclusions in (110) and (111) CdTe. In this study the effect of this new etchant on (100) CdTe surfaces is investigated.The single crystals used in this study were (100) CdTe as-cut slices (1mm thickness) from Bridgman-grown ingots.


1995 ◽  
Vol 05 (C8) ◽  
pp. C8-729-C8-734
Author(s):  
A.I. Lotkov ◽  
V.P. Lapshin ◽  
V.A. Goncharova ◽  
H.V Chernysheva ◽  
V.N. Grishkov ◽  
...  

Author(s):  
R. B. Neder ◽  
M. Burghammer ◽  
Th. Grasl ◽  
H. Schulz

AbstractWe developed a new micro manipulator for mounting individual sub-micrometer sized single crystals within a scanning electron microscope. The translations are realized via a commercially available piezomicroscope, adapted for high vacuum usage and realize nanometer resolution. With this novel instrument it is routinely possible to mount individual single crystals with sizes down to 0.1


Author(s):  
М. Раранський ◽  
В. Балазюк ◽  
М. Мельник ◽  
О. Горда ◽  
М. Гунько

1990 ◽  
Vol 55 (2) ◽  
pp. 345-353 ◽  
Author(s):  
Ivan Halaša ◽  
Milica Miadoková

The authors investigated periodic potential changes measured on oriented sections of Al single crystals during spontaneous dissolution in dilute aqueous solutions of KOH, with the aim to find optimum conditions for the formation of potential oscillations. It was found that this phenomenon is related with the kinetics of the reaction investigated, whose rate also changed periodically. The mechanism of the oscillations is discussed in view of the experimental findings.


1989 ◽  
Vol 54 (11) ◽  
pp. 2951-2961 ◽  
Author(s):  
Miloslav Karel ◽  
Jaroslav Nývlt

Measured growth and dissolution rates of single crystals and tablets were used to calculate the overall linear rates of growth and dissolution of CuSO4.5 H2O crystals. The growth rate for the tablet is by 20% higher than that calculated for the single crystal. It has been concluded that this difference is due to a preferred orientation of crystal faces on the tablet surface. Calculated diffusion coefficients and thicknesses of the diffusion and hydrodynamic layers in the vicinity of the growing or dissolving crystal are in good agreement with published values.


Sign in / Sign up

Export Citation Format

Share Document