Mechanical behaviours of monitoring sleeved members with rigid ends at both core tube sides

Author(s):  
Wudang Ying ◽  
Changgen Deng ◽  
Chenhui Zhang

<p>The monitoring sleeved members (MSMs) are considered with light weight, excellent load-bearing capacity, superior ductility, and can be applied in long span spatial structure to monitor the capacity of the spatial structure. This paper mainly focuses on presenting the mechanical behaviours of the MSMs based on the full-range finite element analysis. The finite element model was developed to simulate the mechanical behaviors of the MSMs, which was verified by a specimen test. Based on the verified finite element model, parametric studies were carried out to investigate the influence of the core protrusion lp, the core slenderness ratio λi, the flexural rigidity ratio β, and the gap δg between core tube and restraining tube on the mechanical behaviours of the MSMs. It is concluded that (1) lp determines the control range of the restraining tube to the core tube. Local buckling of the MSMs with lp/l≤0.0406 occurs at a relatively small axial deformation. The ultimate bearing capacity of the MSMs with lp/l≤0.0406 is generally less than that of the MSM with lp/l&gt;0.0406; (2) λi is a sensitive parameter influencing the failure mode. The smaller the core slenderness ratio λi, the less likely global buckling will occur; (3) β guarantees the control effect of the restraining tube on the core tube. β≥8.349 is needed to avoid global buckling; (4) a proper δg determining the alert moment for contact is indispensable to monitor contact status of MSMs, but it has no effect on the failure mode.</p>

Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 836
Author(s):  
Wudang Ying ◽  
Changgen Deng ◽  
Chenhui Zhang

The buckling of compression members may lead to the progressive collapse of spatial structures. Based on the sleeved compression member, the buckling monitoring member is introduced to control the buckling of compression member and raise buckling alert by sensing contact between the core tube and the restraining tube. Considering the rigid connection among the members in spatial structures, the buckling monitoring member with rigid ends needs to be further analyzed. An experimental test was conducted and finite element analyses were performed with calibrated finite element models. The results indicated that the ultimate bearing capacity and post-ultimate bearing capacity of the core tube were enhanced due to the restraint from the restraining tube. The contact was successfully sensed by pressure sensor, revealing that it sensed the buckling of the core tube. Parametric studies were conducted, indicating that the core protrusion, core slenderness ratio, the gap between the core tube and restraining tube, and the flexural rigidity ratio are the key parameters affecting the bearing capacity and the failure modes of the buckling monitoring member, and some key values of parameters were proposed to obtain good bearing capacity. Based on the parametric studies, the failure modes of buckling-monitoring members are summarized as global buckling and local buckling. The stress distribution and deformation mode of buckling monitoring members are presented in the non-contact, point-contact, line-contact, reverse-contact and ultimate bearing state. The buckling monitoring member is applied in a reticulated shell by substituting the buckling members. It can effectively improve the ultimate bearing capacity of reticulated shell.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Qi Guo ◽  
Qing-wei Chen ◽  
Ying Xing ◽  
Ya-ning Xu ◽  
Yi Zhu

Prefabrication of composites beam reduces the construction time and makes them easily to be assembled, deconstructed, and partially repaired. The use of high-strength frictional bolt shear connectors can greatly enhance the sustainability of infrastructure. However, researches about the concrete-steel friction behavior are very limited. To provide a contribution to this area, 21 tests were conducted to measure the friction coefficient and slip stiffness with different concrete strength, steel strength, and surface treatment of steel. An effective finite element model was developed to investigate the ultimate bearing capacity and load-slip characteristics of bolt shear connection. The accuracy of the proposed finite element model is validated by the tests in this paper. The results demonstrate a positive correlation between concrete strength and friction coefficient and better performance of shot-blasted steel. It is also proved that high-strength frictional bolt has a 30% lower bearing capacity but better strength reserve and antiuplifting than the headed stud.


2019 ◽  
Vol 23 (6) ◽  
pp. 1074-1086 ◽  
Author(s):  
Tao Zhu ◽  
Hongjun Liang ◽  
Yiyan Lu ◽  
Weijie Li ◽  
Hong Zhang

This article investigates the behaviour of slender concrete-filled steel tube square columns strengthened by concrete-filled steel tube jacketing. The columns were realised by placing a square outer steel tube around the original slender concrete-filled steel tube column and pouring strengthening concrete into the gap between the inner and outer steel tubes. Three concrete-filled steel tube square columns and seven retrofitted columns ranging from 1200 to 2000 mm were tested to failure under axial compression. The experimental parameters included three length-to-width ( L/ B1) ratios, three width-to-thickness ( B1/ t1) ratios and three strengths of concrete jacket (C50-grade, C60-grade and C70-grade). Experimentally, the retrofitted columns failed in a similar manner to traditional slender concrete-filled steel tube columns. After strengthening, the retrofitted columns benefitted greatly from the component materials, with their load-bearing capacity and ductility notably enhanced. These enhancements were mainly brought about by sectional enlargement and good confinement of concrete. A finite element model was developed using ABAQUS to better understand the axial behaviour of the retrofitted specimens. A parametric study was conducted, with parameters including the length of the column, thickness of the outer steel tube, strength of the concrete jacket, yield strength of the outer steel tube, thickness of the inner steel tube and strength of the inner concrete. Furthermore, the finite element model was adopted to study the behaviour of rust-damaged and post-fire slender concrete-filled steel tube square columns strengthened by square concrete-filled steel tube jacketing. A modified formula was proposed to predict the load-bearing capacity of retrofitted specimens, and the numerical results agreed well with the experiments and the finite element results of undamaged, rust-damaged and post-fire specimens. It could be used as a reference for practical application.


2011 ◽  
Vol 94-96 ◽  
pp. 805-809
Author(s):  
Yu Yong Fu ◽  
Shu Wang Yan ◽  
Chuang Du

A nonlinear finite element model is developed to study the behavior of square concrete-filled steel tubular(CFST) column and reinforced concrete (RC) column with the same quantity of material and cross-section sizes under eccentric load using ANSYS software.The results indicate that the bearing capacity of CFST column is about 30% greater than RC column and the ductility of CFST column is much greater than RC column under the same conditions. Eccentricity and slenderness ratio have same effect on the bearing capacity of both, which are drop.


Author(s):  
MD Waquar Alam

Large displacements during excavation are regularly observed in Squeezing ground condition and Rock-burst condition with high overburden. The expected displacement has to be estimated prior to excavation to provide enough allowance for the displacements. The support system need to be well-suited through the estimated imposed strains. As the estimated displacements and thus the strains in the support depend upon the load-bearing capacity of support. The ratio of uniaxial compressive strength of rock mass to maximal insitu stress determines tunnel integrity in the weak region.This ratio estimates the requirements of initial lining to control strain to a stipulated level. The elasto-plastic theory may deliver definitive forecasts providing the strength limitations of rock masses are identified accurately. With the help of empirical analysis, the development of displacements for diverse advance rates and supports can be concluded. As a consequence, a quantitative finite element model based on an advanced built-in model is designed to analyse the load-bearing efficiency of initial lining although taking into consideration the time-dependent and non-linear material behaviour of initial lining. The time-dependent excavation mechanism of the drill-and-blast approach for tunnels guided by full face excavation is considered in the finite element model. The material parameters for the initial lining were computed based on case studies- (A Chibro-Khodri Hydropower Tunnel).


Author(s):  
Shi Hui Zhou ◽  
Guo Dong ◽  
Zheng Ji Li

Experimental data obtained from full-scale experiments determines the stiffness of wedge connected of scaffold.A finite element model is developed using semi-rigid scaffold node mode.And a reasonable combination of longitudinal span,transverse span and step distance is obtained.The results accords with the relevant standard of vertical load.It provides a theoretical support for the application of wedge connected scaffold.Additionally,the study explores the safety height of the wedge connected scaffold with or without bridging.It provides a theoretical basis for technical regulations.


2012 ◽  
Vol 14 (6) ◽  
pp. 715-733
Author(s):  
Karamat Malekzadeh Fard ◽  
Alireza Sayyidmousavi ◽  
Zouheir Fawaz ◽  
Habiba Bougherara

In this article, a three-dimensional finite element model is proposed to study the effect of distributed attached mass with thickness and stiffness on the buckling instability of sandwich panels with transversely flexible cores. Unlike the previous works in the literature which have made use of unified displacement theories, the present model uses different types of finite elements to model the core and the face sheets. It utilizes shell elements for the face sheets and three-dimensional solid elements for the core which enables the model to account for the transverse flexibility of the structure. The motions of the face sheets and the core as well as the attached mass are related through defining constraint equations between the nodes of their respective finite elements based on the concept of master and slave nodes which is incorporated into the finite element analysis program ANSYS through a user-defined subroutine. The validated finite element model is then used to study the effects of size, thickness, material property, aspect ratio, and the position of the attached mass on the buckling load of a sandwich panel under different combinations of boundary conditions. The results presented in this study have hitherto not been reported in the literature.


2012 ◽  
Vol 594-597 ◽  
pp. 608-611
Author(s):  
Shao Dong Liu ◽  
Wei Guo ◽  
Xin Zheng

Combined composite foundation has been widely used in actual projects, but its working behaviors need to be studied further. By establishing finite element model, the effect of the core pile was researched. Analysis shows that, the diameter and the length of core pile affect the bearing capacity of combined composite foundation significantly. There is an optimal value of the length and the diameter of core pile, which can make the foundation generate maximum carrying capacity. With the increase of core pile length, the depth of neutral point increased.


Sign in / Sign up

Export Citation Format

Share Document