scholarly journals Development of Soil Distribution and Liquefaction Potential Maps for Downtown Area in Yangon, Myanmar

2018 ◽  
Vol 4 (3) ◽  
pp. 689 ◽  
Author(s):  
Zar Lee Tint ◽  
Nyan Myint Kyaw ◽  
Kyaw Kyaw

The problem of soil against liquefaction during earthquakes is devastating geotechnical phenomenon. Soil against liquefaction is generally occurred in loose cohesionless saturated soil when pore water pressure increases suddenly due to earthquakes and shear strength of the soil decreases to zero. Yangon area has been chosen as the study area because it is the most populated and largest city in Myanmar and located in low to medium seismicity region. In this purpose, the liquefaction potential map have been prepared for site planners and decision makers to prevent loss of lives. Geographic Information System (GIS) is very useful in decision making about the area subjected to liquefaction. ArcGIS software is used to develop the liquefaction potential maps of the selected area in Yangon City. To perform in this study, the field borehole data for groundwater table, Standard penetration test (SPT), blow counts, dry density, wet density and fine content, etc. have been collected from the downtown area of this city. Firstly, the safety factor of soil liquefaction is computed by using NCEER (National Center of Earthquake Engineering Research, 1997) Method based on cyclic resistance ratio and cyclic stress ratio and then liquefaction Potential Index (LPI) values are determined using Luna and Frost Method, 1998. Finally, liquefaction potential maps are developed corresponding to the ground motions for annual probability of exceedance equal to 1%, 2% and 10% in 50 years.

2014 ◽  
Vol 4 (3) ◽  
Author(s):  
Mohammed Fattah ◽  
Mohammed Al-Neami ◽  
Nora Jajjawi

AbstractThe present research is concerned with predicting liquefaction potential and pore water pressure under the dynamic loading on fully saturated sandy soil using the finite element method by QUAKE/W computer program. As a case study, machine foundations on fully saturated sandy soil in different cases of soil densification (loose, medium and dense sand) are analyzed. Harmonic loading is used in a parametric study to investigate the effect of several parameters including: the amplitude frequency of the dynamic load. The equivalent linear elastic model is adopted to model the soil behaviour and eight node isoparametric elements are used to model the soil. Emphasis was made on zones at which liquefaction takes place, the pore water pressure and vertical displacements develop during liquefaction. The results showed that liquefaction and deformation develop fast with the increase of loading amplitude and frequency. Liquefaction zones increase with the increase of load frequency and amplitude. Tracing the propagation of liquefaction zones, one can notice that, liquefaction occurs first near the loading end and then develops faraway. The soil overburden pressure affects the soil liquefaction resistance at large depths. The liquefaction resistance and time for initial liquefaction increase with increasing depths. When the frequency changes from 5 to 10 rad/sec. (approximately from static to dynamic), the response in displacement and pore water pressure is very pronounced. This can be attributed to inertia effects. Further increase of frequency leads to smaller effect on displacement and pore water pressure. When the frequency is low; 5, 10 and 25 rad/sec., the oscillation of the displacement ends within the period of load application 60 sec., while when ω = 50 rad/sec., oscillation continues after this period.


Author(s):  
Sangjukta Das ◽  
Tapati Parashar ◽  
Yudhajit Dey

The study of liquefaction potential of a region is of utmost importance regarding the safety of both life and property. Soil Liquefaction occurs when is there is loss of strength and stiffness in saturated and cohesion less soil due to increase in pore water pressure. The strength of the soil is sometimes reduced by earthquake shaking or rapid loading. Liquefaction causes soil failures which leads to severe damages to structures supported on such grounds leading to significant economic losses. The main purpose of the present study is to analyse liquefaction of some selected sites of Northeast India which falls in the zone of highest seismic risk zone level(Zone V in India)using bore log data of 95boreholes upto a depth of 15m. The liquefaction analysis is carried out with the help of 2 different methods and results are compared. Factor of safety versus depth curves plotted for showing the change in soil liquefaction with increasing depth. The methods used for analysis are simplified approach by Seed and Idriss (1971) and IS code procedure for evaluation of liquefaction potential (2016). More detailed study can be done in future and also various mitigation strategies can be put forward to reduce the impact of hazard.


2015 ◽  
Vol 11 (1) ◽  
pp. 40-48 ◽  
Author(s):  
Arion Cristian ◽  
Calarasu Elena ◽  
Neagu Cristian

Abstract The paper contains the experimental research performed in Bucharest like the borehole data (Standard Penetration Test) and the data obtained from seismic investigations (down-hole prospecting and surface-wave methods). The evaluation of the soils liquefaction resistance based on the results of the SPT, down-hole prospecting and surface-wave method tests and the use of the earthquake records will be presented.


2019 ◽  
Vol 109 (5) ◽  
pp. 1785-1796 ◽  
Author(s):  
Yingqing Qiu ◽  
Henry Benjamin Mason

Abstract Soil liquefaction causes significant damage to coastal infrastructure and buildings worldwide. Strong earthquake shaking can cause soil liquefaction in fully saturated sand deposits. Also, tsunamis can induce liquefaction, as well as enhanced sediment transport and scour, in coastal areas. To understand soil liquefaction potential during an earthquake–tsunami multi‐hazard, we develop a numerical model to predict the multi‐hazard induced excess pore water pressures. We calibrate and verify the numerical model by comparing results with laboratory experiments. Then, we perform numerical experiments using a recorded earthquake motion and hypothetical tsunami wave heights. The numerical experiments show that beach sand liquefies during earthquake loading. The sand then resediments during the quiescent period and the tsunami runup stage. Finally, during rapid tsunami drawdown, liquefaction can occur again, and liquefaction potential during tsunami drawdown primarily depends on the soil’s hydraulic conductivity, as well as the duration of the quiescent period. The results emphasize the need for predictions of earthquake–tsunami loading, as well as measurements of soil properties in coastal areas.


2013 ◽  
Vol 639-640 ◽  
pp. 943-946
Author(s):  
Jiao Long He ◽  
Yong Zhou ◽  
Zhong Ai Jiang

Based on the reinforcing mechanism of dynamic replacement method ,this article put forward the construction parameters and measures of dynamic replacement method , combining with the result of actual engineering field testing experiment. The field load test, standard penetration test and pore water pressure test results show that the characteristic value of subgrade bearing capacity is more than 130 kpa when the tailings residue subgrade has been managed with dynamic replacement method, providing references for applied research on dynamic replacement method in tailings residue subgrade reinforcement.


2019 ◽  
Vol 92 ◽  
pp. 08008
Author(s):  
Bozana Bacic ◽  
Ivo Herle

Time-consuming and complicated investigations of soil liquefaction in cyclic triaxial tests are the most common way of laboratory analysis of this phenomenon. Moreover, the necessary equipment for the performance of cyclic triaxial tests is very expensive. Much simpler method for laboratory testing of the soil liquefaction has been developed at the Institute of Geotechnical Engineering at the TU Dresden. This method takes into account the pore water pressure build-up during cyclic shearing within a short time period. During the test, the soil sample is subjected to horizontal cyclic loading and the generated pore water pressure is measured. In the first series of these experiments, a dependence of the pore water pressure buildup on the initial density of soil could be observed, as expected. When comparing different soils, it is shown that the tendency to liquefaction depends also on the granulometric properties (e.g. grain size distribution) of the soil. The aim of the further development is to establish a simple identification test for laboratory testing of the soil liquefaction.


2018 ◽  
Vol 149 ◽  
pp. 02028 ◽  
Author(s):  
Soukaina Touijrate ◽  
Khadija Baba ◽  
Mohamed Ahatri ◽  
Lahcen Bahi

Liquefaction is a hazardous and temporary phenomenon by which a soil saturated with water loses some or all of its resistance. The undrained conditions and a cyclic load increase the pores water pressure inside the soil and therefore a reduction of the effective stress. Nowadays many semi-empirical methods are used to introduce a proposition to evaluate the liquefaction's potential using the in-situ test results. The objective of this paper is to study their ability to correctly predict the liquefaction potential by modelling our case using finite element methods. The study is based on the data of Cone Penetration Tests experimental results of the Casablanca-Tangier High-Speed Line exactly between PK 116 + 450 and PK 116 + 950 and near of Moulay-Bousselham city. It belongs to the Drader-Soueir basin region which is located in the North-West of Morocco. This region had a specific soil’s formation, the first 50 meters are characterised by the existence of sand layers alternating with layers of clay. These formations are very loose and saturated which suggests the possibility of soil liquefaction. We present and discuss the results of applying the Olsen method [1], the Juang method [2] and the Robertson method [3], in the evaluation of liquefaction susceptibility. Apart from the previous empirical analysis to evaluate the liquefaction potential, numerical modelling is performed in this study.


2002 ◽  
Vol 39 (6) ◽  
pp. 1341-1357 ◽  
Author(s):  
Jean-Marie Fleureau ◽  
Jean-Claude Verbrugge ◽  
Pedro J Huergo ◽  
António Gomes Correia ◽  
Siba Kheirbek-Saoud

A relatively large number of drying and wetting tests have been performed on clayey soils compacted at the standard or modified Proctor optimum water content and maximum density and compared with tests on normally consolidated or overconsolidated soils. The results show that drying and wetting paths on compacted soils are fairly linear and reversible in the void ratio or water content versus negative pore-water pressure planes. On the wet side of the optimum, the wetting paths are independent of the compaction water content and can be approached by compaction tests with measurement of the negative pore-water pressure. Correlations have been established between the liquid limit of the soils and such properties as the optimum water content and negative pore-water pressure, the maximum dry density, and the swelling or drying index. Although based on a limited number of tests, these correlations provide a fairly good basis to model the drying–wetting paths when all the necessary data are not available.Key words: compaction, unsaturated soils, clays, drying, wetting, Proctor conditions.


1998 ◽  
Vol 35 (3) ◽  
pp. 442-459 ◽  
Author(s):  
P K Robertson ◽  
CE (Fear) Wride

Soil liquefaction is a major concern for structures constructed with or on sandy soils. This paper describes the phenomena of soil liquefaction, reviews suitable definitions, and provides an update on methods to evaluate cyclic liquefaction using the cone penetration test (CPT). A method is described to estimate grain characteristics directly from the CPT and to incorporate this into one of the methods for evaluating resistance to cyclic loading. A worked example is also provided, illustrating how the continuous nature of the CPT can provide a good evaluation of cyclic liquefaction potential, on an overall profile basis. This paper forms part of the final submission by the authors to the proceedings of the 1996 National Center for Earthquake Engineering Research workshop on evaluation of liquefaction resistance of soils.Key words: cyclic liquefaction, sandy soils, cone penetration test


Sign in / Sign up

Export Citation Format

Share Document