scholarly journals Moment Redistribution of Shear-Critical GFRP Reinforced Continuously Supported Slender Beams

2021 ◽  
Vol 7 ◽  
pp. 13-31
Author(s):  
Hazem Shebl ◽  
Amr El-Nemr

Fiber-Reinforced Concrete (FRC) is a competitive solution for the durability of reinforced structures. This paper aims to observe moment redistribution behavior occurring due to flexural and shear loading in GFRP reinforced continuous concrete beams. A rectangular cross-section was adopted in this study with dimensions of 200 mm in width and 300 mm in depth with a constant shear span-to-depth ratio of 3. The reinforcement ratio for the top and bottom were equal at sagging and hogging moment regions. A finite element model was created using ANSYS and validated with the existing experimental results in the literature review. Based on the literature review, the parametric study was conducted on twelve beam specimens to evaluate the influence of concrete compressive strength, transversal GFRP stirrups ratio, and longitudinal reinforcement ratio on the redistribution of the moment in beams. Several codes and guidelines adopted different analytical models. The CSA S806 adopted the modified compression field theory in predicting the shear capacity of the simply supported beams. Recently, various researchers encountered several factors and modifications to account for concrete contribution, longitudinal and transverse reinforcement. A comparison between the predicting shear capacity of the generated finite element model and the analytical model and the existing data from literature was held. The generated finite element model showed a good agreement with experimental results while the beam specimens failed in shear after undergoing significant moment redistribution from hogging to sagging moment region. Doi: 10.28991/CEJ-SP2021-07-02 Full Text: PDF

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4468
Author(s):  
Hazem Ahmad ◽  
Amr Elnemr ◽  
Nazam Ali ◽  
Qudeer Hussain ◽  
Krisada Chaiyasarn ◽  
...  

Fiber-reinforced concrete (FRC) is a competitive solution for the durability of reinforced structures. This paper aims to observe the moment redistribution behavior occurring due to flexural and shear loading in Glass Fiber-Reinforced Polymer- (GFRP) reinforced continuous concrete beams. A rectangular cross-section was adopted in this study with dimensions of 200 mm in width and 300 mm in depth with a constant shear span-to-depth ratio of 3. The reinforcement ratio for the top and bottom were equal at sagging and hogging moment regions. A finite element model was created using Analysis System (ANSYS) and validated with the existing experimental results in the literature review. Based on the literature review, the parametric study was conducted on twelve beam specimens to evaluate the influence of concrete compressive strength, transversal GFRP stirrups ratio, and longitudinal reinforcement ratio on the redistribution of the moment in beams. Several codes and guidelines adopted different analytical models. The Canadian Standards Association (CSA) S806 adopted the modified compression field theory in predicting the shear capacity of the simply supported beams. Recently, various researchers encountered several factors and modifications to account for concrete contribution, longitudinal, and transverse reinforcement. A comparison between the predicting shear capacity of the generated finite element model, the analytical model, and the existing data from the literature was performed. The generated finite element model showed a good agreement with the experimental results, while the beam specimens failed in shear after undergoing significant moment redistribution from hogging to sagging moment region. The moment distribution observed about 21.5% from FEM of beam specimen GN-1.2-0.48-d, while the experimental results achieved 24% at failure load. For high strength concrete presented in beam specimen GH-1.2-0.63-d, the result showed about 20.2% moment distribution, compared to that achieved experimentally of 23% at failure load.


2014 ◽  
Vol 501-504 ◽  
pp. 2479-2483
Author(s):  
Wei Bin Yuan ◽  
Chang Yi Chen

The flattening behaviour of angle section beams subjected to pure bending is studied in this paper. Analytical solutions for static instabilities of angle section beams subjected to pure bending about its weak axis are derived using energy methods. Nonlinear finite element model using the code ANSYS is developed to simulate nonlinear snap-through instability of angle section beams under pure bending. The optimization assumption about flattening shape of the leg is proposed, through comparison of between the present solutions, experimental results, and the finite element results.


2016 ◽  
Vol 858 ◽  
pp. 913-916 ◽  
Author(s):  
Konstantinos Zekentes ◽  
Konstantin Vassilevski ◽  
Antonis Stavrinidis ◽  
George Konstantinidis ◽  
Maria Kayambaki ◽  
...  

Purely vertical 4H-SiC JFETs have been modeled by using three different approaches: the analytical model, the finite element model and the compact model. The results of the modeling have been compared with experimental results on a series of fabricated self-aligned devices with two different channel lengths (0.3 and 1.1μm) and various channel widths (1.5, 2, 2.5, 3, 4 and 5 μm). For all the considered models I-V and C-V characteristics could be satisfactorily simulated.


2015 ◽  
Vol 9 (1) ◽  
pp. 205-212 ◽  
Author(s):  
Fang Xiaoming ◽  
Yan Zhichao ◽  
Wang Liquan ◽  
Huang Yuxuan

Riser system is a key equipment for offshore oil and gas development. When conducting riser design, fatigue failure mode is the chief one among the many failure modes which should be taken into account. To assess the fatigue performance of riser accurately, it is necessary to conduct fatigue tests. Resonant bending fatigue test is one effective method for fatigue tests of risers. In this paper, the principle of resonant bending fatigue test and test procedures are presented firstly, and then a finite element model using ABAQUS is created to simulate the resonant bending fatigue test, and the results from the finite element model are compared with the experimental results. The good agreements between the FEM results and experimental results verify the accuracy of the finite element model in this paper.


2019 ◽  
Vol 92 ◽  
pp. 16002 ◽  
Author(s):  
Rukshan Azoor ◽  
Ravin Deo ◽  
Jayantha Kodikara

Corrosion is one of the major factors leading to the failure of buried pipelines. Soil properties such as aeration, moisture content and level of compaction are known to cause variations in the level of corrosion of buried metallic structures. It is known that, at a particular soil moisture content, the corrosion rate reaches a maximum value. While this phenomenon is generally understood, an explanation from a soil mechanics perspective with mechanisms for soil water continuity and mass transport processes is currently lacking. This work fills this void by modelling the moisture-controlled diffusion transport and electrical conductivity in soil coupled to the electrochemical activity on the buried metal surface. Variations in the electrical conductivity and oxygen diffusion in sand at different degrees of saturation were determined experimentally. The results were used as input parameters in a finite element model. Results from the coupled finite element model were compared with experimental results from electrochemical corrosion tests. The tests were conducted on cast iron specimen buried in sand and the corrosion behaviour under various aeration regimes were studied. The presence of an optimum moisture/aeration regime, where the corrosion rate becomes a maximum was demonstrated and the mechanisms behind this phenomenological behaviour are discussed in this paper. The modelling and experimental results are expected to be useful in developing non-intrusive testing methods for underground corrosion.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Peng-Fei Sun ◽  
Hong-Wu Huang ◽  
Shui-Ting Zhou ◽  
Yi-Jui Chiu ◽  
Meng Du ◽  
...  

This paper elaborates on the production mechanisms of standing waves during high-speed tire rolling and analyzes the relationship between the change of wavelength of sidewall waves and the vehicle velocity, from an oblique wave point of view. A finite element model for a 195/65R15 radial tire is established with the nonlinear analysis software ABAQUS, based on the tire structure and cord parameters. This paper comparatively analyzes the finite element simulation results and experimental results of the tire load-sinkage relation and the load vs inflatable section width relation and finds little difference between the simulation and experimental results. A similar analysis studies the change in the wavelength of sidewall standing waves at different vehicle velocities during high-speed tire rolling. The calculated value by the oblique wave approach, the value by simulation, and the experimental results demonstrate high consistency, concluding that during high-speed tire rolling, the wavelength of sidewall standing waves increases with vehicle velocity. Thus, the accuracy of the finite element model is verified under both static and dynamic conditions. Under a constant tire pressure and load, the impact of velocity change on tire-cord stress during high-speed tire rolling is studied based on the finite element model so as to identity the relation between the cord stress and standing waves.


2019 ◽  
Vol 48 (3) ◽  
pp. 168-187
Author(s):  
Sunish Vadakkeveetil ◽  
Arash Nouri ◽  
Saied Taheri

ABSTRACT Being able to estimate tire/rubber friction is very important to tire engineers, materials developers, and pavement engineers. This is because of the need for estimating forces generated at the contact, optimizing tire and vehicle performance, and estimating tire wear. Efficient models for contact area and interfacial separation are key for accurate prediction of friction coefficient. Based on the contact mechanics and surface roughness, various models were developed that can predict real area of contact and penetration depth/interfacial separation. In the present work, we intend to compare the analytical contact mechanics models using experimental results and numerical analysis. Nano-indentation experiments are performed on the rubber compound to obtain penetration depth data. A finite element model of a rubber block in contact with a rough surface was developed and validated using the nano-indentation experimental data. Results for different operating conditions obtained from the developed finite element model are compared with analytical model results, and further model improvements are discussed.


Sign in / Sign up

Export Citation Format

Share Document