scholarly journals CATALYTIC ACTIVITY OF ZSM-5 ZEOLITE LOADED WITH TRANSITION METALS FOR THE SELECTIVE CATALYTIC REDUCTION OF NOX

2017 ◽  
Vol 19 (2) ◽  
pp. 15-31
Author(s):  
I.M. Saaid ◽  
A.R. Mohamed ◽  
S. Bhatia Bhatia

Catalytic activity measurement were carried out on catalysts formulated from ZSM-5 zeolite separately loaded with transition metals (Cu, Co, Ni, Fe) for the removal of NOx in simulated diesel exhaust conditions. Various factors were investigated to compare the performance of these catalysts including catalyst preparation method, Si/Al ratio of the parent zeolite support, and durability in the exhaust stream containing water vapor or SO2. In many experimental conditions except in the presence of water vapor or SO2, Cu-ZSM5 remained the most active catalyst with 100% NOX conversion at around 350°C. C0-ZSM5 and Ni-ZSM5 could also achieve complete NOx conversion but at a much higher temperature of around 450°C. Fe-ZSM5 catalyst was the least active catalyst probably due to the formation of iron oxide particle, which accelerated formation of carbon monoxide.

2014 ◽  
Vol 633 ◽  
pp. 121-124 ◽  
Author(s):  
Liang Jing Zhang ◽  
Su Ping Cui ◽  
Hong Xia Guo ◽  
Xiao Yu Ma ◽  
Xiao Gen Luo

Catalysts of Mn/TiO2 and Mn-Ce /TiO2 prepared by co-precipitation method for low temperature selective catalytic reduction (SCR) of NO with NH3 were investigated in this study. The experimental results showed that co-precipitation method after improvement, the NO conversion of Mn-Ce/TiO2 catalyst increased sharply. Meanwhile, the addition of cerium has significant effects on the catalytic activity. Characterizations of catalysts were carried out by XRD, BET and H2-TPR. The characterized results indicated that co-precipitation method after improvement, in temperature windows 150 to 300 °C, showed higher NOx conversion.


Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2534
Author(s):  
Yaping Zhang ◽  
Peng Wu ◽  
Ke Zhuang ◽  
Kai Shen ◽  
Sheng Wang ◽  
...  

The effect of SO2 on the selective catalytic reduction of NOx by NH3 over V2O5-0.2CeO2/TiO2-ZrO2 catalysts was studied through catalytic activity tests and various characterization methods, like Brunner−Emmet−Teller (BET) surface measurement, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray fluorescence (XRF), hydrogen temperature-programmed desorption (H2-TPR), X-ray photoelectron spectroscopy (XPS) and in situ diffused reflectance infrared Fourier transform spectroscopy (DRIFTS). The results showed that the catalyst exhibited superior SO2 resistance when the volume fraction of SO2 was below 0.02%. As the SO2 concentration further increased, the NOx conversion exhibited some degree of decline but could restore to the original level when stopping feeding SO2. The deactivation of the catalyst caused by water in the flue gas was reversible. However, when 10% H2O was introduced together with 0.06% SO2, the NOx conversion was rapidly reduced and became unrecoverable. Characterizations indicated that the specific surface area of the deactivated catalyst was significantly reduced and the redox ability was weakened, which was highly responsible for the decrease of the catalytic activity. XPS results showed that more Ce3+ was generated in the case of reacting with SO2. In situ DRIFTS results confirmed that the adsorption capacity of SO2 was enhanced obviously in the presence of O2, while the SO2 considerably refrained the adsorption of NH3. The adsorption of NOx was strengthened by SO2 to some extent. In addition, NH3 adsorption was improved after pre-adsorbed by SO2 + O2, indicating that the Ce3+ and more oxygen vacancy were produced.


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1048
Author(s):  
João Pedro S. Nascimento ◽  
Lais F. Oton ◽  
Alcineia C. Oliveira ◽  
Elena Rodríguez-Aguado ◽  
Enrique Rodríguez-Castellón ◽  
...  

Doubly promoted MeMo/Nb2O5 catalysts, in which Me = Pt, Ni, or Co oxides were prepared for the selective catalytic reduction of NOx by CO reaction (CO-SCR). Comparable chemical, textural, and structural analyses revealed similarities between NiMo and CoMo impregnated on Nb2O5, in contrast to PtMo sites, which were not homogeneously dispersed on the support surface. Both the acid function and metal dispersion gave a synergistic effect for CO-SCR at moderate temperatures. The reactivity of PtMo catalysts towards NOx and CO chemisorption was at low reaction temperatures, whereas the NOx conversion over CoMo was greatly improved at relatively high temperatures. Careful XPS, NH3-TPD, and HRTEM analyses confirmed that the large amounts of strong and moderate acid sites from PtOx entrapped on MoO3 sites induced high NOx conversions. NiMo/Nb2O5 showed poor performance in all conditions. Poisoning of the MeMo sites with water vapor or SO2 (or both) provoked the decline of the NOx conversions over NiMo and PtMo sites, whereas the structure of CoMo ones remained very active with a maximum NOx conversion of 70% at 350 °C for 24 h of reaction. This was due to the interaction of the Co3+/Co2+ and Mo6+ actives sites and the weak strength Lewis acid Nb5+ ones, as well.


2012 ◽  
Vol 550-553 ◽  
pp. 230-233
Author(s):  
Luo Ning Ma ◽  
Hong Xia Qu ◽  
Qin Zhong ◽  
Jie Zhang ◽  
Qi Sheng Tang

Fe-ZSM-5 catalysts were synthesized by hydrothermal method under different levels of iron loading. The result of XRD and TG/DTA showed that Fe-ZSM-5 catalysts were successfully obtained after calcination at 550 °C. The effects of Si/(Fe+Al) and Fe/Al ratio on the SCR performance of Fe-ZSM-5 catalyst were investigated in a simulated flue gas. When Si/(Fe+Al)=20 and Fe:Al=20 Fe-ZSM-5 catalyst showed excellent catalytic activity. Under the condition of 210 °C, [NH3]/[NO] of 1.2, [O2] of 6 vol%, [NOx] of 900×10-6, Si/(Fe+Al)=20 and Fe/Al=1, NOx conversion exceeds 98%. Besides, Fe-ZSM-5 catalyst was excellently resistant to SO2 and H2O in the SCR reaction.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 55
Author(s):  
Katarzyna Świrk ◽  
Ye Wang ◽  
Changwei Hu ◽  
Li Li ◽  
Patrick Da Costa ◽  
...  

Copper and iron promoted ZrO2 catalysts were prepared by one-pot synthesis using urea. The studied catalysts were characterized by XRD, N2 physisorption, XPS, temperature-programmed desorption of NH3 (NH3-TPD), and tested by the selective catalytic reduction by ammonia (NH3-SCR) of NO in the absence and presence of water vapor, under the experimental conditions representative of exhaust gases from stationary sources. The influence of SO2 on catalytic performance was also investigated. Among the studied catalysts, the Fe-Zr sample showed the most promising results in NH3-SCR, being active and highly selective to N2. The addition of SO2 markedly improved NO and NH3 conversions during NH3-SCR in the presence of H2O. The improvement in acidic surface properties is believed to be the cause.


Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 365
Author(s):  
Jose Luis Cerrillo ◽  
Antonio Eduardo Palomares

The presence of bromate in water sources generates environmental concern due to its toxicity for humans. Diverse technologies, like membranes, ion exchange, chemical reduction, etc., can be employed to treat bromate-polluted water but they produce waste that must be treated. An alternative to these technologies can be the catalytic reduction of bromate to bromide using hydrogen as a reducing agent. In this review, we analyze the research published about this catalytic technology. Specifically, we summarize and discuss about the state of knowledge related to (1) the different metals used as catalysts for the reaction; (2) the influence of the support on the catalytic activity; (3) the characterization of the catalysts; (4) the reaction mechanisms; and (5) the influence of the water composition in the catalytic activity and in the catalyst stability. Based on published papers, we analyze the strength and weaknesses of this technique and the possibilities of using this reaction for the treatment of bromate-polluted water as a sustainable process.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1966
Author(s):  
Shiyong Yu ◽  
Jichao Zhang

A systematic modeling approach was scrutinized to develop a kinetic model and a novel monolith channel geometry was designed for NH3 selective catalytic reduction (NH3-SCR) over Cu-ZSM-5. The redox characteristic of Cu-based catalysts and the variations of NH3, NOx concentration, and NOx conversion along the axis in porous media channels were studied. The relative pressure drop in different channels, the variations of NH3 and NOx conversion efficiency were analyzed. The model mainly considers NH3 adsorption and desorption, NH3 oxidation, NO oxidation, and NOx reduction. The results showed that the model could accurately predict the NH3-SCR reaction. In addition, it was found that the Cu-based zeolite catalyst had poor low-temperature catalytic performance and good high-temperature activity. Moreover, the catalytic reaction of NH3-SCR was mainly concentrated in the upper part of the reactor. In addition, the hexagonal channel could effectively improve the diffusion rate of gas reactants to the catalyst wall, reduce the pressure drop and improve the catalytic conversion efficiencies of NH3 and NOx.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 3010
Author(s):  
Meritxell Martí ◽  
Jaime Gisbert-Paya ◽  
Mª Ángeles Bonet-Aracil ◽  
Petar Jovančić ◽  
Manuel J. Lis ◽  
...  

The hydrophilicity of fibers is directly related to the comfort of a fabric and represents one of the most important aspects of a textile. Therefore, polyester (PES) modification has focused on an increase in moisture content and a subsequent improvement of the user’s experience. Based on the glycerol hygroscopic properties, the main objective has been the enhancement of the hydrophilicity of polyester by glycerol treatments. Furthermore, microwave irradiation and alkaline treatment have been applied, in order to increase glycerol adhesion. Treated PES samples were characterized by performing moisture content, negative ion, water diffusion and water vapor resistance analyses. The effect of different treatment conditions such as bath ratio (1/10 or 1/15), temperature (40, 60 or 100 °C), time (2 or 5 min) and microwave radiation intensity (300 or 500 W) was evaluated. The moisture content of treated PES results indicated that by decreasing the bath ratio and increasing the time and temperature the moisture gain can reach almost 14%, which can be easily related to increases in the weight of the fiber. The treatment with alkali was done and led to the highest moisture increase. Treatment with 500 W microwave irradiation led to higher glycerol retention after rinsing. Different experimental conditions were applied to the glycerol-treated PES fabrics, and a clear improvement in moisture content was obtained increasing the comfort. The results were compared with the ones obtained for cotton and wool, where the moisture is higher than non treated PES.


2014 ◽  
Vol 875-877 ◽  
pp. 213-217 ◽  
Author(s):  
Mohd Razali Sohot ◽  
Umi Sarah Jais ◽  
Muhd Rosli Sulaiman

Selective catalytic reduction (SCR) is a well-proven method to reduce NO emission. However, to choose the right catalyst that provides a surface for reaction between NO and ammonia at low temperatures is a challenging task for a catalysts developers. In an earlier study, we prepared V2O5-CeO2-SiO2 catalyst with increasing V2O5 content by sol-gel route and found that the catalytic activity improved with increasing the V2O5 loading up to 0.5%. The catalytic activity, however, dropped when V2O5 loading was about 1% and increased back when the loading of V2O5 was about 5%. In this study, we looked into the microstructural relationship to explain these findings. The microstructures of the catalysts before and after exposure to NO gas revealed that the catalysts with 0.2% and 0.5% V2O5 were more porous after the reduction process possibly due to improved breakdown of (NH4)HCO3 to NH3 by the possible interaction with the V2O5 and CeO2-containing catalysts which consequently resulted in a more efficient NO reduction to N2 and H2O at low temperature. The microstructure of the catalyst with 1% V2O5 content to 5%, improved back the efficiency although clogging by CeVO4 phase still possible due to its presence based on XRD. The well-ordered micropores before exposure to NO and the more efficient breakdown of (NH4)HCO3 could have contributed to increase back the catalytic activity at low temperature.


Sign in / Sign up

Export Citation Format

Share Document