scholarly journals Development of organic–inorganic Halide Perovskites (OHPs) based Memristors

2021 ◽  
Author(s):  
Rana Abdou ◽  
Mohamed alHor ◽  
Zubair Ahmed ◽  
Noora Althani

Organic – inorganic halide perovskite (OHP) has drawn researchers’ attention working in the field of optoelectronics from last ten years due to its remarkable optical properties such as adjustable band gap, ambipolar charge transport, high optical absorption coefficients, and extended carrier diffusion lengths. OHP based memristors (memory + resistors) are a newly introduced passive two-terminal, nonlinear device used for information storage. In this work we have fabricated methyl ammonium lead iodide (MAPbI3) crystals-based device from MAPbI3 crystals. The crystals have been developed by simple solution process-based method. Developed crystals have shown highly porous geometry and trap charges across these pores facilitates higher conductivity. The fabricated device exhibits ~2.7 milli second response recovery time, which enabled elevated speed and showed hysteresis in the I-V characteristics thus demonstrating superior storage capacities. Hence, the developed device has been potential tool for next-generation non-volatile memories.

2021 ◽  
Vol 59 (5) ◽  
pp. 321-328
Author(s):  
Hansol Kim ◽  
Hyewon Gu ◽  
Minju Song ◽  
Choong-Heui Chung ◽  
Yong-Jun Oh ◽  
...  

Halide perovskite solar cells have been attracting tremendous attention as next-generation solar cell materials because of their excellent optical and electrical properties. Formamidinium lead tri-iodide (FAPbI3) exhibits the narrowest band gap among lead iodide perovskites and shows excellent thermal and chemical stability, also. However, the large-area coating of FAPbI3 needed for commercialization has not been successful because of the instability of the black phase of FAPbI3 at ambient temperature. This study presents a compositional engineering direction to control the polymorph of the FAPbI3 thin film for the shear coating processes, without halide mixing. By adopting a hot substrate above 100 oC, our shear coating process can produce the black phase FA-based halide perovskites without halide mixing. We carefully investigate the Cs-FA and MA-FA mixed lead iodide perovskites’ phase stability by combining the study with thin-film fabrication and ab initio calculations. Cs-FA mixing shows promising behaviors for stabilizing α-FAPbI3 (black phase) compared with MA-FA. Stable FA-rich perovskite films cannot be achieved via shear coating processes with MA-FA mixing. Ab initio calculations revealed that Cs-FA mixing is excellent for inhibiting phase decomposition and water incorporation. This study is the first report that FA-based halide perovskite thin films can be made with the shear coating process without MA-Br mixing. We reveal the origin of the stable film formation with Cs-FA mixing, and present future research directions for fabricating FA-based perovskite thin films using shear coating.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Chunlong Li ◽  
Jie Li ◽  
Zhengping Li ◽  
Huayong Zhang ◽  
Yangyang Dang ◽  
...  

Nanostructured halide perovskites have highly yielded record LEDs due to their higher versatility in the local management of charge carriers, which has enabled photoluminescence quantum yields (PLQYs) close to 100%....


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4385
Author(s):  
Ehsan Raza ◽  
Fakhra Aziz ◽  
Arti Mishra ◽  
Noora Jabor Al-Thani ◽  
Zubair Ahmad

The current work proposed the application of methylammonium lead iodide (MAPbI3) perovskite microrods toward photo resistor switches. A metal-semiconductor-metal (MSM) configuration with a structure of silver-MAPbI3(rods)-silver (Ag/MAPbI3/Ag) based photo-resistor was fabricated. The MAPbI3 microrods were prepared by adopting a facile low-temperature solution process, and then an independent MAPbI3 microrod was employed to the two-terminal device. The morphological and elemental compositional studies of the fabricated MAPbI3 microrods were performed using FESEM and EDS, respectively. The voltage-dependent electrical behavior and electronic conduction mechanisms of the fabricated photo-resistors were studied using current–voltage (I–V) characteristics. Different conduction mechanisms were observed at different voltage ranges in dark and under illumination. In dark conditions, the conduction behavior was dominated by typical trap-controlled charge transport mechanisms within the investigated voltage range. However, under illumination, the carrier transport is dominated by the current photogenerated mechanism. This study could extend the promising application of perovskite microrods in photo-induced resistor switches and beyond.


2021 ◽  
Author(s):  
Arindam Mondal ◽  
Akash Lata ◽  
Aarya Prabhakaran ◽  
Satyajit Gupta

Application of three-dimensional (3D)-halide perovskites (HaP) in photocatalysis encourages the new exercise with two-dimensional (2D) HaP based thin-films for photocatalytic degradation of dye. The reduced dimensionality to 2D-HaPs, with a...


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Zhifang Tan ◽  
Jincong Pang ◽  
Guangda Niu ◽  
Jun-Hui Yuan ◽  
Kan-Hao Xue ◽  
...  

Abstract Metal halide perovskites have recently been reported as excellent scintillators for X-ray detection. However, perovskite based scintillators are susceptible to moisture and oxygen atmosphere, such as the water solubility of CsPbBr3, and oxidation vulnerability of Sn2+, Cu+. The traditional metal halide scintillators (NaI: Tl, LaBr3, etc.) are also severely restricted by their high hygroscopicity. Here we report a new kind of lead free perovskite with excellent water and radiation stability, Rb2Sn1-x Te x Cl6. The equivalent doping of Te could break the in-phase bonding interaction between neighboring octahedra in Rb2SnCl6, and thus decrease the electron and hole dimensionality. The optimized Te content of 5% resulted in high photoluminescence quantum yield of 92.4%, and low X-ray detection limit of 0.7 µGyair s−1. The photoluminescence and radioluminescence could be maintained without any loss when immersing in water or after 480,000 Gy radiations, outperforming previous perovskite and traditional metal halides scintillators.


Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 667 ◽  
Author(s):  
Edson Meyer ◽  
Dorcas Mutukwa ◽  
Nyengerai Zingwe ◽  
Raymond Taziwa

Perovskite solar cells employ lead halide perovskite materials as light absorbers. These perovskite materials have shown exceptional optoelectronic properties, making perovskite solar cells a fast-growing solar technology. Perovskite solar cells have achieved a record efficiency of over 20%, which has superseded the efficiency of Gräztel dye-sensitized solar cell (DSSC) technology. Even with their exceptional optical and electric properties, lead halide perovskites suffer from poor stability. They degrade when exposed to moisture, heat, and UV radiation, which has hindered their commercialization. Moreover, halide perovskite materials consist of lead, which is toxic. Thus, exposure to these materials leads to detrimental effects on human health. Halide double perovskites with A2B′B″X6 (A = Cs, MA; B′ = Bi, Sb; B″ = Cu, Ag, and X = Cl, Br, I) have been investigated as potential replacements of lead halide perovskites. This work focuses on providing a detailed review of the structural, optical, and stability properties of these proposed perovskites as well as their viability to replace lead halide perovskites. The triumphs and challenges of the proposed lead-free A2B′B″X6 double perovskites are discussed here in detail.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lethy Krishnan Jagadamma ◽  
Shaoyang Wang

Indoor photovoltaics (IPVs) are receiving great research attention recently due to their projected application in the huge technology field of Internet of Things (IoT). Among the various existing photovoltaic technologies such as silicon, Cadmium Telluride (CdTe), Copper Indium Gallium Selenide (CIGS), organic photovoltaics, and halide perovskites, the latter are identified as the most promising for indoor light harvesting. This suitability is mainly due to its composition tuning adaptability to engineer the bandgap to match the indoor light spectrum and exceptional optoelectronic properties. Here, in this review, we are summarizing the state-of-the-art research efforts on halide perovskite-based indoor photovoltaics, the effect of composition tuning, and the selection of various functional layer and device architecture onto their power conversion efficiency. We also highlight some of the challenges to be addressed before these halide perovskite IPVs are commercialized.


2020 ◽  
Author(s):  
Jeongjae Lee ◽  
Woocheol Lee ◽  
Keehoon Kang ◽  
Takhee Lee ◽  
Sung Keun Lee

Application of two-dimensional (2D) organic-inorganic hybrid halide perovskites for optoelectronic devices requires detailed understanding of the local structural features including the Pb-I bonding in the 2D layers and the capping ligand-perovskite interaction. In this study, we show that <sup>1</sup>H and <sup>207</sup>Pb solid-state Nuclear Magnetic Resonance (NMR) spectroscopy can serve as a non-invasive and complementary technique to quantify the composition and to probe the local structural features of 2D Ruddlesden-Popper phase BA<sub>2</sub>MA<i><sub>n</sub></i><sub>-1</sub>Pb<i><sub>n</sub></i>I<sub>3<i>n</i>+1</sub> (<i>n</i>=1-4) with butylammonium (BA) spacers. <sup>207</sup>Pb echo and <sup>1</sup>H-detected <sup>207</sup>Pb→<sup>1</sup>H heteronuclear correlation (HETCOR) experiments enables layer-by-layer structural detection of 2D halide perovskites. We show that the observed correlation between <sup>207</sup>Pb NMR shifts and mean Pb-I bond lengths around each Pb site allows us to probe the local bonding environment of Pb via its <sup>207</sup>Pb NMR shift. We envisage that this technique will be vital for better understanding the materials properties as determined by the local atomistic environments in multi-dimensional halide perovskites.


2019 ◽  
Vol 6 (1) ◽  
pp. 238-247 ◽  
Author(s):  
Nan Zhang ◽  
Xiaohui Ma ◽  
Yanyang Yin ◽  
Yu Chen ◽  
Chuannan Li ◽  
...  

One dimension CuO/CdS composites with an average diameter of 30 nm were synthesized by a solvothermal method. The operating temperature of the sensors is 182 °C, and their responses were improved by 6 times. The ultrafast response–recovery time was obtained.


Sign in / Sign up

Export Citation Format

Share Document