scholarly journals MORPHOLOGICAL CHARACTERISTICS AND WATER STATUS OF SOME TUNISIAN BARLEY GENOTYPES SUBMITTED TO WATER STRESS

Author(s):  
Mansouri ◽  
Radhouane

Tunisia has been qualified as a country vulnerable to climate change that will be unregistered a great drop of annual rainfall and an increase of evaporation.  Response strategies of agriculture to drought will be critical because drought is one of the major abiotic stresses which adversely affect crop growth and yield. Among strategies to be developed to cope with the effect of climate change, recourse of genetic diversity and new varietal creation can be a solution among other methods. In this study, four barley genotypes were cultivated in semi-controlled conditions and submitted to three levels of water stress.  Data were recorded on number of grain per plant (NGP), one thousand grains weight (PMG), total leaf surface (TLS), plant height (HAT), stomata density (DS), leaf water content (RWC) and leaf water potential (LWP). Results showed that morphological characteristics (HAT, TLS, DS), yield components (NGP, PMG) and water status (LWP, RWC) of barley genotypes were decreased significantly. However, moderate water deficit didn’t affect significantly the most of parameters studied. Study had demonstrated also that barley genotypes developed different strategies and mechanisms to cope with water deficit, based essentially on their osmotic adjustment capacity.

2021 ◽  
Author(s):  
Pablo Berríos ◽  
Abdelmalek Temnani ◽  
Susana Zapata ◽  
Manuel Forcén ◽  
Sandra Martínez-Pedreño ◽  
...  

<p>Mandarin is one of the most important Citrus cultivated in Spain and the sustainability of the crop is subject to a constant pressure for water resources among the productive sectors and to a high climatic demand conditions and low rainfall (about 250 mm per year). The availability of irrigation water in the Murcia Region is generally close to 3,500 m<sup>3</sup> per ha and year, so it is only possible to satisfy 50 - 60% of the late mandarin ETc, which requires about 5,500 m<sup>3</sup> per ha. For this reason, it is necessary to provide tools to farmers in order to control the water applied in each phenological phase without promoting levels of severe water stress to the crop that negatively affect the sustainability of farms located in semi-arid conditions. Stem water potential (SWP) is a plant water status indicator very sensitive to water deficit, although its measurement is manual, discontinuous and on a small-scale.  In this way, indicators measured on a larger scale are necessary to achieve integrating the water status of the crop throughout the farm. Thus, the aim of this study was to determine the sensitivity to water deficit of different hyperspectral single bands (HSB) and their relationship with the midday SWP in mandarin trees submitted to severe water stress in different phenological phases. Four different irrigation treatments were assessed: i) a control (CTL), irrigated at 100% of the ETc throughout the growing season to satisfy plant water requirements and three water stress treatments that were irrigated at 60% of ETc throughout the season – corresponding to the real irrigation water availability – except  during: ii) the end of phase I and beginning of phase II (IS IIa), iii) the first half of phase II (IS IIb) and iv) phase III of fruit growth (IS III), which irrigation was withheld until values of -1.8 MPa of SWP or a water stress integral of 60 MPa day<sup>-1</sup>. When these threshold values were reached, the spectral reflectance values were measured between 350 and 2500 nm using a leaf level spectroradiometer to 20 mature and sunny leaves on 4 trees per treatment. Twenty-four HVI and HSB were calculated and a linear correlation was made between each of them with SWP, where the ρ940 and ρ1250 nm single bands reflectance presented r-Pearson values of -0.78** and -0.83***, respectively. Two linear regression curves fitting were made: SWP (MPa) = -11.05 ∙ ρ940 + 7.8014 (R<sup>2</sup> =0.61) and SWP (MPa) = -13.043 ∙ ρ1250 + 8.9757 (R<sup>2</sup> =0.69). These relationships were obtained with three different fruit diameters (35, 50 and 65 mm) and in a range between -0.7 and -1.6 MPa of SWP. Results obtained show the possibility of using these single bands in the detection of water stress in adult mandarin trees, and thus propose a sustainable and efficient irrigation scheduling by means of unmanned aerial vehicles equipped with sensors to carry out an automated control of the plant water status and with a suitable temporal and spatial scale to apply precision irrigation.</p>


2020 ◽  
Vol 71 (12) ◽  
pp. 3603-3612 ◽  
Author(s):  
Natanella Illouz-Eliaz ◽  
Idan Nissan ◽  
Ido Nir ◽  
Uria Ramon ◽  
Hagai Shohat ◽  
...  

Abstract Low gibberellin (GA) activity in tomato (Solanum lycopersicum) inhibits leaf expansion and reduces stomatal conductance. This leads to lower transpiration and improved water status under transient drought conditions. Tomato has three GIBBERELLIN-INSENSITIVE DWARF1 (GID1) GA receptors with overlapping activities and high redundancy. We tested whether mutation in a single GID1 reduces transpiration without affecting growth and productivity. CRISPR-Cas9 gid1 mutants were able to maintain higher leaf water content under water-deficit conditions. Moreover, while gid1a exhibited normal growth, it showed reduced whole-plant transpiration and better recovery from dehydration. Mutation in GID1a inhibited xylem vessel proliferation, which led to lower hydraulic conductance. In stronger GA mutants, we also found reduced xylem vessel expansion. These results suggest that low GA activity affects transpiration by multiple mechanisms: it reduces leaf area, promotes stomatal closure, and reduces xylem proliferation and expansion, and as a result, xylem hydraulic conductance. We further examined if gid1a performs better than the control M82 in the field. Under these conditions, the high redundancy of GID1s was lost and gid1a plants were semi-dwarf, but their productivity was not affected. Although gid1a did not perform better under drought conditions in the field, it exhibited a higher harvest index.


2015 ◽  
Vol 50 (7) ◽  
pp. 534-540 ◽  
Author(s):  
Cleber Morais Guimarães ◽  
Luís Fernando Stone ◽  
Adriano Pereira de Castro ◽  
Odilon Peixoto de Morais Júnior

Abstract: The objective of this work was to evaluate the feasibility of using physiological parameters for water deficit tolerance, as an auxiliary method for selection of upland rice genotypes. Two experiments - with or without water deficit - were carried out in Porangatu, in the state of Goiás, Brazil; the water deficit experiment received about half of irrigation that was applied to the well-watered experiment. Four genotypes with different tolerance levels to water stress were evaluated. The UPLRI 7, B6144F-MR-6-0-0, and IR80312-6-B-3-2-B genotypes, under water stress conditions, during the day, showed lower stomatal diffusive resistance, higher leaf water potential, and lower leaf temperature than the control. These genotypes showed the highest grain yields under water stress conditions, which were 534, 601, and 636 kg ha-1, respectively, and did not differ significantly among them. They also showed lower drought susceptibility index than the other genotypes. 'BRS Soberana' (susceptible control) was totally unproductive under drought conditions. Leaf temperature is a easy-read parameter correlated to plant-water status, viable for selecting rice genotypes for water deficit tolerance.


1984 ◽  
Vol 102 (3) ◽  
pp. 687-693 ◽  
Author(s):  
Alejandra Paez ◽  
H. Hellmers ◽  
B. R. Strain

SummaryIf atmospheric carbon dioxide concentration continues to increase, plant growth and crop yield could be affected. New Yorker and Better Boy cultivars of tomato (Lycopersicon esculentum) were used to investigate possible intraspecific variation in the response of crop species to increased CO2. Because precipitation and temperature are predicted to change with the increasing atmospheric CO2 concentration, the response of the two cultivars to the interaction between CO2 and water stress was also examined. Seeds of the two cultivars were germinated and grown under controlled environmental conditions, in either 350 or 675 μ1 CO2/1.The plant water status of the two cultivars was inherently different but was little affected by the CO2 concentration when the plants were well watered. When water was withheld for 5 days the total leaf water potential and osmotic potential decreased in both CO2 treatments but less rapidly in high CO2 than in low. Under low CO2 total leaf water potential decreased to a lower value than osmotic potential. The differences were due, at least in part, to the reduced stomatal conductance and transpiration rate under high CO2.Increased CO2 ameliorated the detrimental effects of drought stress on plant growth. The results indicate that increased CO2 could differentially affect the relative drought resistance of species cultivars.


1991 ◽  
Vol 18 (1) ◽  
pp. 17 ◽  
Author(s):  
Z Kefu ◽  
R Munns ◽  
RW King

Exposing barley and cotton plants to 75 mol m-3 NaCl reduced transpiration and increased abscisic acid (ABA) levels in leaves, roots and xylem sap. Exposing saltbush (Atriplex spongiosa) plants to 75 mol m-3 NaCI, at which concentration they grow best, did not affect transpiration or ABA levels but when the NaCl was increased to 150 mol m-3 transpiration fell and ABA levels rose. ABA levels in leaves were high in salt-treated barley and saltbush even when the leaf water status was raised by pressurising the roots. These responses indicate that an increased leaf ABA level was not triggered by leaf water deficit, but by the root's response to the salinity. The flux of ABA in the xylem sap of the three species was more than enough to account for the amount of ABA in leaves, in the presence and absence of salinity. This suggests that the roots may be the source of at least part of the ABA found in leaves.


OENO One ◽  
1992 ◽  
Vol 26 (3) ◽  
pp. 163
Author(s):  
Francesco Iacono ◽  
Massimo Bertamini ◽  
Tardáguila Javier

<p style="text-align: justify;">Fluorescence emission is linked to leaf physiological conditions. In particular water stress modifies emission curves strongly. But fluorescence is also influenced by some factors which usually arise in experimental vine breeding programmes. The present research studies some variables that usually characterize the trials on genus <em>Vitis</em>: rootstocks and graftings.</p><p style="text-align: justify;">The time of measurement is very important and the fluorescence variables (absolute value) are not correlated with leaf water content. It needs a standardisation by time. The gross relation between fluorescence (after standardisation) and RWC is significant but it is modified by the rootstock behaviour. The Variable Fluorescence is strongly linked to leaf water content, even though the Maximum rate of Fluorescence Quenching shows a variable correlation with decreasing RWC. The genotype controls that variable better than Variable Fluorescence.</p>


1989 ◽  
Vol 16 (6) ◽  
pp. 549 ◽  
Author(s):  
SL Steinberg ◽  
MJ Mcfarland ◽  
JC Miller

A gradation, that reflects the maturity of the leaves, exists in the leaf water, osmotic and turgor potential and stomatal conductance of leaves along current and 1-year-old branches of peach. Predawn leaf water potentials of immature folded leaves were approximately 0.24 MPa lower than mature leaves under both well-watered and dry conditions. During the daytime the leaf water potential of immature leaves reflected the water potential produced by water flux for transpiration. In well- watered trees, mature and immature unfolded leaves had a solute potential at least 0.5 MPa lower than immature folded leaves, resulting in a turgor potential that was approximately 0.8 MPa higher. The turgor requirement for growth appeared to be much less than that maintained in mature leaves. As water stress developed and leaf water potentials decreased, the osmotic potential of immature folded leaves declined to the level found in mature leaves, thus maintaining turgor. In contrast, mature leaves showed little evidence of turgor maintenance. Stomatal conductance was lower in immature leaves than in fully mature leaves. With the onset of water stress, conductance of mature leaves declined to a level near that of immature leaves. Loss of turgor in mature leaves may be a major factor in early stomatal closure. It was concluded that osmotic adjustment played a role in maintenance of a leaf water status favorable for some growth in water-stressed immature peach leaves.


2008 ◽  
Vol 59 (1) ◽  
pp. 27 ◽  
Author(s):  
A. A. Likoswe ◽  
R. J. Lawn

The response to terminal water deficit stress of three grain legumes, soybean, cowpea and pigeonpea, was evaluated in plants grown in large tubes, in competition with either the same species or one of the other two species. The aim was to explore how species differences in drought response affected water use, growth and survival of plants in pure stand and in competition. Two plants, comprising the test species and its competitor, were grown in each tube. Water was withheld 26 days after sowing by which time each plant had at least three fully expanded trifoliolate leaves. Leaf water status and plant growth were measured through destructive samples when 80% and 90% of the estimated plant available water (PAW) was depleted and at plant death, while PAW depletion, node growth and leaf survival were monitored at 2–3 day intervals until the last plants died (61 days after water was withheld). In pure stand, the rate of PAW depletion was initially slowest in cowpea despite its much larger leaf area, and fastest in soybean. Node growth was most sensitive in cowpea, ceasing at 65% PAW depletion compared with 85% PAW depletion in pigeonpea and soybean, so that the latter two species produced relatively more nodes after water was withheld. However, senescence of the lower leaves was most rapid in soybean and slowest in cowpea. Cowpea and pigeonpea extracted almost all PAW and died an average 18 days and 14 days, respectively, after maximum PAW depletion. In contrast, soybean died before 90% of PAW was depleted and so in pure stand used less water. There were otherwise only minor differences between the species combinations in the timing and maximum level of PAW depletion. The ability of cowpea and pigeonpea to maintain leaf water status above lethal levels for longer was achieved through different means. Cowpea relied primarily on dehydration avoidance and maintained tissue water status higher for longer, whereas pigeonpea demonstrated greater dehydration tolerance. While significant levels of osmotic adjustment (OA) were identified in soybean and pigeonpea, OA appeared to be of limited benefit to leaf survival in soybean. Pigeonpea invested significantly more total dry matter (TDM) in roots than either cowpea or soybean. Cowpea survived longest in pure stand whereas pigeonpea and soybean survived shortest in pure stand, suggesting that the dehydration avoidance response of cowpea was more effective in competition with like plants whereas the dehydration tolerance strategies of pigeonpea and soybean were least effective when competing against like plants. On average, TDM per plant ranked in the order cowpea > soybean > pigeonpea, largely reflecting initial differences in plant size when water was withheld. However, there was an inverse relation between TDM of a species and that of its competitor, so that in effect, water not used by a given plant to produce TDM was used by its competitor and there were no differences in TDM production per tube.


Sign in / Sign up

Export Citation Format

Share Document