scholarly journals INFLUENCE OF AUSTEMPERING TIME AND AUSTEMPERING TEMPERATURE IN MICROSTRUCTURE AND MECHANICAL PROPERTIES IN AUSTEMPERED DUCTILE IRON

Author(s):  
Giulliana Victória Tissi ◽  
Gláucio Soares Da Fonseca

Austempered Ductile Iron (ADI) has excellent mechanical properties related to its microstructure ausferrite, and with the cycle of austempering heat treatment, many mechanical properties can be obtained from the same alloy, simply changing the time and temperature. To evaluate the influence of austempering time and temperature on the ADI, analyzed the modifications in the microstructures and mechanical properties of the samples of ductile iron, subjected to austempering heat treatment with austenitizing time and temperature of 910 °C and 90 minutes and during the austempering bath, the samples were submitted to different temperatures, 300, 320, 340, 360 e 380 °C, and for four different times for each temperature, 75, 110, 145 and 180 minutes. For the microstructural analysis, the microscopic techniques were used: optical and scanning electron and mechanical properties were obtained by mechanical testing of hardness and impact. The results show that there is a relationship between austempering temperature with microstructure and mechanical properties. The highest retained austenite and energy absorbed were 25.73% and 130 J, respectively, for the austempered sample at 380 °C and 180 minutes and the highest hardness value was 458 HB for the austempered sample at 300 °C and 75 minutes.  

Author(s):  
Nikša Čatipović ◽  
Dražen Živković ◽  
Zvonimir Dadić ◽  
Marin Viceić

In this paper the influence of austempering temperature and salt bath agitation on the final microstructure and mechanical properties of the ferritic ductile iron were studied. 17 samples had been subjected to different heat treatment parameters. Different microstructures were recorded upon the completion of the tests. From the obtained micro images, it is obvious that both the austempering temperature and salt bath agitation affect the final microstructure of the austempered ductile iron. Lower austempering temperatures and salt bath agitation produce more ausferrite in the microstructure, hence the harder and tougher phases are present. This was confirmed with hardness and toughness test of the 17 heat-treated samples. Lower austempering temperatures give more ausferrite phase and therefore higher hardness, but hardness decreases with increasing austempering temperatures. Toughness rises with rising austempering temperatures, but drops significantly with temperatures above 395°C because of the final microstructure.


2004 ◽  
Vol 40 (1) ◽  
pp. 11-19 ◽  
Author(s):  
Olivera Eric ◽  
Marina Jovanovic ◽  
Leposava Sidjanin ◽  
Dragan Rajnovic

Microstructure and mechanical properties of Cu, Ni and Mo alloyed cast ductile iron have been investigated after austempering. Samples were austenitised at 860oC for 1h and then austempered at 320oC and 400oC in the interval from 0,5 to 5h. The X-ray diffraction technique and the light microscopy were utilized to investigate the bainitic transformation, while tensile and impact tests were performed for characterization of mechanical properties. By austempering at 320oC in the range between 2 and 5h, a microstructure typical for austempered ductile iron was produced, i.e. a mixture of free bainitic ferrite and highly carbon enriched retained austenite. The characteristic of the whole range of austempering at 400oC is the appearance of martensitic structure. The maximum impact energy (133 J) coincides with the maximum value of volume fraction of retained austenite that was obtained after 2,5h of austempering at 320oC. The appearance of martensite during austempering at 400oC is the main cause for much lower tensile properties than at 320oC.


2019 ◽  
Vol 38 (2019) ◽  
pp. 892-896 ◽  
Author(s):  
Süleyman Tekeli ◽  
Ijlal Simsek ◽  
Dogan Simsek ◽  
Dursun Ozyurek

AbstractIn this study, the effect of solid solution temperature on microstructure and mechanical properties of the AA7075 alloy after T6 heat treatment was investigated. Following solid solution at five different temperatures for 2 hours, the AA7075 alloy was quenched and then artificially aged at 120∘C for 24 hours. Hardness measurements, microstructure examinations (SEM+EDS, XRD) and tensile tests were carried out for the alloys. The results showed that the increased solid solution temperature led to formation of precipitates in the microstructures and thus caused higher hardness and tensile strength.


2018 ◽  
Vol 12 (4) ◽  
pp. 4180-4190
Author(s):  
Ananda Hegde ◽  
Sathyashankara Sharma ◽  
Gowri Shankar M. C

When the ductile iron which is also known as Spheroidal Graphite (SG) iron, is subjected to austempering heat treatment, the material is known as austempered ductile iron (ADI). This material has good mechanical properties and has various applications in different fields. This revolutionary material with its excellent combination of strength, ductility, toughness and wear resistance has the potential to replace some of the commonly used conventional materials such as steel, aluminium and other light weight alloys as it offers production advantage as well. One of the problems encountered during manufacturing is machining of ADI parts owing to its high hardness and wear resistance. Many researchers over a period of time have reported the machinability aspects of the ADI. This paper presents a review on the developments made on the machinability aspects of ADI along with other mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document