scholarly journals PENGOLAHAN AIR LINDI DENGAN PROSES BIOFILTER ANAEROB-AEROB DAN DENITRIFIKASI

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Nusa Idaman Said ◽  
Dinda Rita Krishumartani Hartaja

Most of the leachate treatment in Indonesia using pond system, that is maturation ponds, anaerobic ponds, stabilization ponds, and continued using wetland. The weakness of this technology is long retention time (between 30-50 days), thus the building a pond requires a wide area. In addition, the processed leachate is over quality standards to be discharged into the environment agency. To overcome these problems, one alternative is to use a combination of processing leachate within anaerobic-aerobic biofilter and denitrification. The technology is expected to shorten the residence time, so that the land required for the processing of leachate is not too extensive . The processed leachate is also expected to meet the quality standards are allowed to be discharged into the environment. Leachate treatment using anaerobic - aerobic biofilter and the denitrification process with a total hidraulic retention time of 12 day, the retention time in the anaerobic reactor 8 ( eight ) days , the retention time in the aerobic reactor 3 (three) days and retention time in the denitrification reactor 1 (one) day can be generated COD removal efficiency of 97 %, ammonia removal efficiency of 97.56 %, TSS removal  efficiency 87.5 % , and nitrate removal efficiency of 86.4 % Keywords : Anaerob-aerob biofilter, denitrification, leachate.

2006 ◽  
Vol 6 (2) ◽  
pp. 125-130
Author(s):  
C.-H. Hung ◽  
K.-H. Tsai ◽  
Y.-K. Su ◽  
C.-M. Liang ◽  
M.-H. Su ◽  
...  

Due to the extensive application of artificial nitrogen-based fertilizers on land, groundwater from the central part of Taiwan faces problems of increasing concentrations of nitrate, which were measured to be well above 30 mg/L all year round. For meeting the 10 mg/L nitrate standard, optimal operations for a heterotrophic denitrification pilot plant designed for drinking water treatment was investigated. Ethanol and phosphate were added for bacteria growing on anthracite to convert nitrate to nitrogen gas. Results showed that presence of high dissolved oxygen (around 4 mg/L) in the source water did not have a significantly negative effect on nitrogen removal. When operated under a C/N ratio of 1.88, which was recommended in the literature, nitrate removal efficiency was measured to be around 70%, sometimes up to 90%. However, the reactor often underwent severe clogging problems. When operated under C/N ratio of 1.0, denitrification efficiency decreased significantly to 30%. Finally, when operated under C/N ratio of 1.5, the nitrate content of the influent was almost completely reduced at the first one-third part of the bioreactor with an overall removal efficiency of 89–91%. Another advantage for operating with a C/N ratio of 1.5 is that only one-third of the biosolids was produced compared to a C/N value of 1.88.


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2913
Author(s):  
Feng Liu ◽  
Suqin Wang ◽  
Xuezhi Zhang ◽  
Feiyue Qian ◽  
Yaobing Wang ◽  
...  

Contamination of wastewater with organic-limited nitrates has become an urgent problem in wastewater treatment. The cooperating heterotrophic with sulfur autotrophic denitrification is an alternative process and the efficiency has been assessed in many studies treating simulated wastewater under different operating conditions. However, due to the complex and diverse nature of actual wastewater, more studies treating actual wastewater are still needed to evaluate the feasibility of collaborative denitrification. In this study, lab-scale experiments were performed with actual nitrate polluted water of two different concentrations, with glucose and sodium thiosulfate introduced as mixed electron donors in the coupling sulfur-based autotrophic and heterotrophic denitrification. Results showed that the optimum denitrification performance was exhibited when the influent substrate mass ratio of C/N/S was 1.3/1/1.9, with a maximum denitrification rate of 3.52 kg NO3−-N/(m3 day) and nitrate removal efficiency of 93% in the coupled systems. Illumina high-throughput sequencing analysis revealed that autotrophic, facultative, and heterotrophic bacteria jointly contributed to high nitrogen removal efficiency. The autotrophic denitrification maintained as the predominant process, while the second most prevalent denitrification process gradually changed from heterotrophic to facultative with the increase of influent concentration at optimum C/N/S ratio conditions. Furthermore, the initiation of dissimilatory nitrate reduction to ammonium (DNRA) was very pivotal in promoting the entire denitrification process. These results suggested that sulfur-based autotrophic coupled with heterotrophic denitrifying process is an alternative and promising method to treat nitrate containing wastewater.


1998 ◽  
Vol 25 (5) ◽  
pp. 854-863 ◽  
Author(s):  
D M Shiskowski ◽  
D S Mavinic

This bench-scale study investigated the nitrogen-removal capabilities of two different biological process configurations treating methanogenic-state landfill leachate containing up to 1200 mg N/L of ammonia. The first configuration was a pre-denitrification system known as the modified Ludzack-Ettinger (MLE) process. Large clarifier sludge recycle flows, set to yield clarifier recycle ratios of 7:1 and 8:1, were evaluated as a means to reduce effluent NOx concentrations. A pre- and post-denitrification system, known as the four-stage Bardenpho process, was the second configuration evaluated. The MLE systems (20 day aerobic solids retention time (SRT)) were capable of producing effluent containing about 50 mg N/L of ammonia and 200-235 mg N/L of total inorganic nitrogen (ammonia + NOx) when treating leachate containing approximately 1200 mg N/L of ammonia. In contrast, effluent from the four-stage Bardenpho system contained less than 1 mg N/L of ammonia and 15 mg N/L of NOx, when treating 1100 mg N/L ammonia leachate. An aerobic number 1 SRT of 20 days (total aerobic SRT approximately equal to 40 days) was used with aerobic number 1 and clarifier sludge recycle ratios of 4:1 and 3:1, respectively. The ammonia-removal potential of both systems was clearly demonstrated but each system also showed certain disadvantages, characteristic of each process.Key words: ammonia-N, anoxic denitrification, leachate treatment, nitrification, pre-denitrification.


2021 ◽  
Vol 267 ◽  
pp. 02021
Author(s):  
Hengyuan Liu ◽  
Chenhe Zhang

The biofilm-electrode reactor coupled with sulfur autotrophic denitrification process (BER-SAD) was used to remove nitrate in groundwater, and the effect of current intensity on the denitrification characteristics of the coupled process was explored. Current intensity had a great influence on the denitrification effect of the coupled process, the maximum nitrate removal efficiency of 99.9% and lowest nitrite production were gained under the optimum current density of 100 mA. Moreover, the accumulation concentration of SO42- increased gradually with the increase of current intensity. With the increase of current intensity, the proportion of hydrogen autotrophic denitrification decreased, while the proportion of sulfur autotrophic denitrification increased.


2021 ◽  
Vol 15 (1) ◽  
pp. 19-26
Author(s):  
Majid Ebadi ◽  
◽  
Ali Asareh ◽  
Reza Jalilzadeh Yengejeh ◽  
Najaf Hedayat ◽  
...  

Background: Highly-concentrated phosphate and nitrate anions from sugarcane wastewater are often discharged into public waters without standardized treatments. This study assessed the effects of electrical coagulation, initial pH and reaction time in the removal of phosphate and nitrate pollutants. Methods: We used aluminum electrodes to remove the pollutants at Hakhim Farabi Agricultural and Industrial complex, Khuzestan Province, Iran. A septic tank was used for collecting water samples followed by measuring the pH, and the concentrations of phosphate and nitrate in the samples. The pH was set at 5, 7, 9 or 11. Six aluminum electrodes were placed perpendicular to the water flow and were connected to power in a single-polar method. They were used to assess the effects of pH changes, electrical power at 10 and 30 volts and the water retention time at 15, 30, 45 or 60 min. on the efficiency of the pollutants’ removal. Results: The results indicated that under equal retention time and varying pH values, as voltage increased from 10 to 30, the phosphate and nitrate removal increased progressively. It was further demonstrated that the maximum phosphate removal efficiency was achieved at pH7, while it declined at higher pH levels. The highest possible nitrate removal efficiency was achieved under alkaline pH levels. The overall results showed that at every pH and voltage, the percentage of phosphate and nitrate removal increased over time. Conclusion: This study demonstrated that electro-coagulation process is an appropriate and efficient method to remove phosphate and nitrate pollutants from sugarcane wastewaters.


2013 ◽  
Vol 448-453 ◽  
pp. 536-539
Author(s):  
Bin Liu ◽  
Xu Ya Peng ◽  
Qi Tian ◽  
Hua Zhao

Landfill leachate treatment is a major problem to be solved in the field of environmental protection, and ammonia nitrogen is one of the major pollutants in landfill leachate, whose processing technology needs further improvement. In this paper, ultrasound/ultraviolet co-oxidation technology was directly applied to the treatment of high concentration landfill leachate without the pretreatment operations of dilution, filter, and adjusting the pH conditions. The results showed that: ultrasonic and ultraviolet had certain effects on the ammonia nitrogen removal, and the ammonia nitrogen removing effects became better when the ultrasonic power was greater, or the ultraviolet wavelength was shorter. When the ultrasonic power was 100 W, the ammonia nitrogen removal efficiency was 25.2%, and the UV of 254 nm could decompose 20.2% of the ammonia nitrogen in landfill leathate. In the condition of aeration, ultrasonic and ultraviolet had good synergistic effect on leachate ammonia nitrogen treatment. When the ultrasonic power was 100 W, UV wavelength was 254 nm, and the aeration rate was 150 L/h, the ammonia removal efficiency of high concentration leachate (ammonia nitrogen concentration of 1800 mg/L) reached 98.5% after 6 hours. The paper's research results provide a useful reference for the removal of landfill leachate ammonia nitrogen.


2018 ◽  
Vol 54 (4B) ◽  
pp. 27
Author(s):  
Vu Phuong Thu

The importance of a combination of methane oxidation and denitrification processes in a two-stage bioreactor was investigated for the removal of nitrate using methane gas. In the configuration I, methane and oxygen were supplied separately to two columns of the two-stage bioreactor, an oxic column and an anoxic column. The nitrate removal efficiency was around            25 % and nitrite presented in the liquid medium, showing that the denitrification process was not complete.  In the configuration II, methane and oxygen were supplied together to one column of the two-stage bioreactor, better results were achieved. Nitrate removal efficiency increased to almost 100 %, no nitrite was found in the liquid medium. The methane oxidation and the denitrification processes seemed to be happened simultaneously in one column of the two-stage bioreactor and demonstrated its advantages. Methane utilized concentration in the medium of the methane oxidation column increased from 1 to 2.1 mg/L, which resulted in more soluble organic carbon was created and supplied for denitrifiers. The C/N utilized ratio was lower in the Configuration II showing that the aerobic methane oxidation coupled to denitrification (AMO-D) achieved higher efficiency when methane and oxygen were supplied together.


2018 ◽  
Vol 77 (6) ◽  
pp. 1505-1513 ◽  
Author(s):  
Yassine Ouarda ◽  
Mehdi Zolfaghari ◽  
Patrick Drogui ◽  
Brahima Seyhi ◽  
Gerardo Buelna ◽  
...  

Abstract In this study, a submerged membrane bioreactor was used to study the effect of low and high bisphenol A (BPA) concentration on the sludge biological activity. The pilot was operated over 540 days with hydraulic retention time and solid retention time of 5.5 hours and 140 days, respectively. As a hydrophobic compound, BPA was highly adsorbed by activated sludge. In lower concentrations, the biodegradation rate remained low, since the BPA concentration in the sludge was lower than 0.5 mg/g TS; yet, at an influent concentration up to 15 mg/L, the biodegradation rate was increasing, resulting in 99% BPA removal efficiency. The result for chemical oxygen demand removal showed that BPA concentration has no effect on the heterotrophic bacteria that were responsible for the organic carbon degradation. In higher concentrations, up to 16 mg of BPA was used for each gram of sludge as a source of carbon. However, the activity of autotrophic bacteria, including nitrifiers, was completely halted in the presence of 20 mg/L of BPA or more. Although nitrification was stopped after day 400, ammonia removal remained higher than 70% due to air stripping. Assimilation by bacteria was the only removal pathway for phosphorus, which resulted in an average 35% of P-PO4 removal efficiency.


1995 ◽  
Vol 31 (12) ◽  
pp. 267-273 ◽  
Author(s):  
B. S. O. Ceballos ◽  
A. Konig ◽  
B. Lomans ◽  
A. B. Athayde ◽  
H. W. Pearson

A single full-scale primary facultative pond in Sapé, north-east Brazil was monitored for performance and efficiency. The pond had a hydraulic retention time of 61 days and achieved a 95% BOD5 removal efficiency and had no helminth eggs in the effluent. The effluent failed to meet the WHO faecal coliform guideline for unrestricted irrigation. The pond was dominated by the cyanobacterium Microcystis and gave better than predicted orthophosphate removal. Details of how the system could be simply upgraded utilizing the same land are discussed.


1999 ◽  
Vol 40 (8) ◽  
pp. 145-151 ◽  
Author(s):  
Liliana Borzacconi ◽  
Gisela Ottonello ◽  
Elena Castelló ◽  
Heber Pelaez ◽  
Augusto Gazzola ◽  
...  

The performance of a bench scale upflow sludge bed (USB) denitrifying reactor was evaluated in order to integrate it into a C and N removal system for Sanitary Landfill Leachate. The raw leachate used presented COD and NH4-N average values of 30000 mg/l and 1000 mg/l, respectively. The complete system comprises in addition an UASB reactor and a nitrifying RBC. A portion of the aerobic reactor effluent was recycled into the denitrification stage and some raw leachate was also added as an additional C source. In order to obtain operating parameters the denitrifying reactor was operated alone. Sludge from an aerobic reactor (RBC) treating raw leachate was used as inoculum. Shortly after the start up, good granulation of the sludge bed was observed. Using raw leachate and UASB outlet as carbon sources with COD/NO3-N ratios of 4 and 12, respectively, denitrification efficiencies of about 90% were reached. A sludge yield of 0.16 gVSS/gCODremoved was obtained operating with raw leachate. For the anoxic reactor operating in the complete system, denitrification efficiencies of 90% were also achieved. A nitrogen gas recycle was a successful way to avoid frequently observed sludge bed rising problems.


Sign in / Sign up

Export Citation Format

Share Document