scholarly journals Effect of current on biofilm-electrode reactor coupled with sulfur autotrophic denitrification process (BER-SAD) for nitrate removal from wastewater

2021 ◽  
Vol 267 ◽  
pp. 02021
Author(s):  
Hengyuan Liu ◽  
Chenhe Zhang

The biofilm-electrode reactor coupled with sulfur autotrophic denitrification process (BER-SAD) was used to remove nitrate in groundwater, and the effect of current intensity on the denitrification characteristics of the coupled process was explored. Current intensity had a great influence on the denitrification effect of the coupled process, the maximum nitrate removal efficiency of 99.9% and lowest nitrite production were gained under the optimum current density of 100 mA. Moreover, the accumulation concentration of SO42- increased gradually with the increase of current intensity. With the increase of current intensity, the proportion of hydrogen autotrophic denitrification decreased, while the proportion of sulfur autotrophic denitrification increased.

Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2913
Author(s):  
Feng Liu ◽  
Suqin Wang ◽  
Xuezhi Zhang ◽  
Feiyue Qian ◽  
Yaobing Wang ◽  
...  

Contamination of wastewater with organic-limited nitrates has become an urgent problem in wastewater treatment. The cooperating heterotrophic with sulfur autotrophic denitrification is an alternative process and the efficiency has been assessed in many studies treating simulated wastewater under different operating conditions. However, due to the complex and diverse nature of actual wastewater, more studies treating actual wastewater are still needed to evaluate the feasibility of collaborative denitrification. In this study, lab-scale experiments were performed with actual nitrate polluted water of two different concentrations, with glucose and sodium thiosulfate introduced as mixed electron donors in the coupling sulfur-based autotrophic and heterotrophic denitrification. Results showed that the optimum denitrification performance was exhibited when the influent substrate mass ratio of C/N/S was 1.3/1/1.9, with a maximum denitrification rate of 3.52 kg NO3−-N/(m3 day) and nitrate removal efficiency of 93% in the coupled systems. Illumina high-throughput sequencing analysis revealed that autotrophic, facultative, and heterotrophic bacteria jointly contributed to high nitrogen removal efficiency. The autotrophic denitrification maintained as the predominant process, while the second most prevalent denitrification process gradually changed from heterotrophic to facultative with the increase of influent concentration at optimum C/N/S ratio conditions. Furthermore, the initiation of dissimilatory nitrate reduction to ammonium (DNRA) was very pivotal in promoting the entire denitrification process. These results suggested that sulfur-based autotrophic coupled with heterotrophic denitrifying process is an alternative and promising method to treat nitrate containing wastewater.


2006 ◽  
Vol 6 (2) ◽  
pp. 125-130
Author(s):  
C.-H. Hung ◽  
K.-H. Tsai ◽  
Y.-K. Su ◽  
C.-M. Liang ◽  
M.-H. Su ◽  
...  

Due to the extensive application of artificial nitrogen-based fertilizers on land, groundwater from the central part of Taiwan faces problems of increasing concentrations of nitrate, which were measured to be well above 30 mg/L all year round. For meeting the 10 mg/L nitrate standard, optimal operations for a heterotrophic denitrification pilot plant designed for drinking water treatment was investigated. Ethanol and phosphate were added for bacteria growing on anthracite to convert nitrate to nitrogen gas. Results showed that presence of high dissolved oxygen (around 4 mg/L) in the source water did not have a significantly negative effect on nitrogen removal. When operated under a C/N ratio of 1.88, which was recommended in the literature, nitrate removal efficiency was measured to be around 70%, sometimes up to 90%. However, the reactor often underwent severe clogging problems. When operated under C/N ratio of 1.0, denitrification efficiency decreased significantly to 30%. Finally, when operated under C/N ratio of 1.5, the nitrate content of the influent was almost completely reduced at the first one-third part of the bioreactor with an overall removal efficiency of 89–91%. Another advantage for operating with a C/N ratio of 1.5 is that only one-third of the biosolids was produced compared to a C/N value of 1.88.


2017 ◽  
Vol 17 (6) ◽  
pp. 1703-1711 ◽  
Author(s):  
E. Karamati Niaragh ◽  
M. R. Alavi Moghaddam ◽  
M. M. Emamjomeh

Abstract This study aims to investigate the effect of the main parameters on the performance of a continuous flow electro-coagulation (EC) process for nitrate removal efficiency and its operating costs. For this purpose, the Taguchi experimental design with orthogonal array L27 (313) was applied to analyze the effects of selected parameters, namely initial nitrate concentration, inlet flow rate, current density and initial pH. According to the analysis of variance results, the inlet flow rate and the current density were recognized to be the most effective factors playing a pivotal role in nitrate removal efficiency by using an EC process. The optimum conditions of initial nitrate concentration, inlet flow rate, current density and initial pH were found to be 100 mg/L, 50 mL/min, 80 A/m2 and 8, respectively. As a result, the observed nitrate removal efficiency under these conditions was 61.70%. In addition, operating costs were evaluated as 1.278 US$/g NO3-removed. Finally, a high correlation was observed between the experimental and predicted results indicating an appropriate accuracy of the Taguchi model for nitrate removal efficiency and its operating costs in an EC system.


2006 ◽  
Vol 53 (12) ◽  
pp. 91-99 ◽  
Author(s):  
I. Manconi ◽  
A. Carucci ◽  
P. Lens ◽  
S. Rossetti

The feasibility of an autotrophic denitrification process in an activated sludge reactor, using sulphide as the electron donor, was tested for simultaneous denitrification and sulphide removal. The reactor was operated at nitrate (N) to sulphide (S) ratios between 0.5 and 0.9 to evaluate their effect on theN-removal efficiency, the S-removal efficiency and the product formation during anoxic oxidation of sulphide. One hundred per cent removal of both nitrate and sulphide was achieved at a NLR of 7.96 mmol N·L−1·d−1 (111.44 mg NO3−-N·L−1·d−1) and at a N/S ratio of 0.89 with complete oxidation of sulphide to sulphate. The oxygen level in the reactor (10%) was found to influence the N-removal efficiency by inhibiting the denitrification process. Moreover, chemical (or biological) oxidation of sulphide with oxygen occurred, resulting in a loss of the electron donor. FISH analysis was carried out to study the microbial population in the system.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Nusa Idaman Said ◽  
Dinda Rita Krishumartani Hartaja

Most of the leachate treatment in Indonesia using pond system, that is maturation ponds, anaerobic ponds, stabilization ponds, and continued using wetland. The weakness of this technology is long retention time (between 30-50 days), thus the building a pond requires a wide area. In addition, the processed leachate is over quality standards to be discharged into the environment agency. To overcome these problems, one alternative is to use a combination of processing leachate within anaerobic-aerobic biofilter and denitrification. The technology is expected to shorten the residence time, so that the land required for the processing of leachate is not too extensive . The processed leachate is also expected to meet the quality standards are allowed to be discharged into the environment. Leachate treatment using anaerobic - aerobic biofilter and the denitrification process with a total hidraulic retention time of 12 day, the retention time in the anaerobic reactor 8 ( eight ) days , the retention time in the aerobic reactor 3 (three) days and retention time in the denitrification reactor 1 (one) day can be generated COD removal efficiency of 97 %, ammonia removal efficiency of 97.56 %, TSS removal  efficiency 87.5 % , and nitrate removal efficiency of 86.4 % Keywords : Anaerob-aerob biofilter, denitrification, leachate.


2018 ◽  
Vol 54 (4B) ◽  
pp. 27
Author(s):  
Vu Phuong Thu

The importance of a combination of methane oxidation and denitrification processes in a two-stage bioreactor was investigated for the removal of nitrate using methane gas. In the configuration I, methane and oxygen were supplied separately to two columns of the two-stage bioreactor, an oxic column and an anoxic column. The nitrate removal efficiency was around            25 % and nitrite presented in the liquid medium, showing that the denitrification process was not complete.  In the configuration II, methane and oxygen were supplied together to one column of the two-stage bioreactor, better results were achieved. Nitrate removal efficiency increased to almost 100 %, no nitrite was found in the liquid medium. The methane oxidation and the denitrification processes seemed to be happened simultaneously in one column of the two-stage bioreactor and demonstrated its advantages. Methane utilized concentration in the medium of the methane oxidation column increased from 1 to 2.1 mg/L, which resulted in more soluble organic carbon was created and supplied for denitrifiers. The C/N utilized ratio was lower in the Configuration II showing that the aerobic methane oxidation coupled to denitrification (AMO-D) achieved higher efficiency when methane and oxygen were supplied together.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Mahtab Ahmad ◽  
Meththika Vithanage ◽  
Kangjoo Kim ◽  
Ju-Sik Cho ◽  
Young Han Lee ◽  
...  

Veterinary antibiotics in groundwater may affect natural microbial denitrification process. A microcosm study was conducted to evaluate the influence of sulfamethazine and chlortetracycline at different concentrations (0, 0.01, 0.1, and 1.0 mg/L) on nitrate reduction in groundwater under denitrifying condition. Decrease in nitrate removal and nitrite production was observed with the antibiotics. Maximum inhibition of nitrate removal was observed after seven days of incubation with 0.01 mg/L sulfamethazine (17.0%) and 1.0 mg/L chlortetracycline (15.4%). The nitrite production was inhibited with 1.0 mg/L sulfamethazine to 82.0% and chlortetracycline to 31.1%. The initial/final nitrate concentrations indicated that 0.01 mg/L sulfamethazine and 1.0 mg/L chlortetracycline were most effective in inhibiting activity of denitrifying bacteria in groundwater. After 12 days of incubation, the sulfamethazine biodegradation was observed whereas chlortetracycline was persistent. Sulfamethazine and chlortetracycline in groundwater could inhibit the growth and capability of naturally occurring denitrifying bacteria, thereby threatening nitrate pollution in groundwater.


Author(s):  
Qianyu Hang ◽  
Haiyan Wang ◽  
Zan He ◽  
Weiyang Dong ◽  
Zhaosheng Chu ◽  
...  

Hydrilla verticillata–sulfur-based heterotrophic and autotrophic denitrification (HSHAD) process was developed in free water surface constructed wetland mesocosms for the treatment of nitrate-rich agricultural runoff with low chemical oxygen demand/total nitrogen (C/N) ratio, whose feasibility and mechanism were extensively studied and compared with those of H. verticillata heterotrophic denitrification (HHD) mesocosms through a 273-day operation. The results showed that the heterotrophic and autotrophic denitrification can be combined successfully in HSHAD mesocosms, and achieve satisfactory nitrate removal performance. The average NO3−-N removal efficiency and denitrification rate of HSHAD were 94.4% and 1.3 g NO3−-N m−3·d−1 in steady phase II (7–118 d). Most nitrate was reduced by heterotrophic denitrification with sufficient organic carbon in phase I (0–6 d) and II, i.e., the C/N ratio exceeded 4.0, and no significant difference of nitrate removal capacity was observed between HSHAD and HHD mesocosms. During phase III (119–273 d), sulfur autotrophic denitrification gradually dominated the HSHAD process with the C/N ratio less than 4.0, and HSHAD mesocosms obtained higher NO3−-N removal efficiency and denitrification rate (79.1% and 1.1 g NO3−-N m−3·d−1) than HHD mesocosms (65.3% and 1.0 g NO3−-N m−3·d−1). As a whole, HSHAD mesocosms removed 58.8 mg NO3−-N more than HHD mesocosms. pH fluctuated between 6.9–9.0 without any pH buffer. In general, HSHAD mesocosms were more stable and efficient than HHD mesocosms for NO3−-N removal from agricultural runoff during long-term operation. The denitrificans containing narG (1.67 × 108 ± 1.28 × 107 copies g−1 mixture-soil−1), nirS (8.25 × 107 ± 8.95 × 106 copies g−1 mixture-soil−1), and nosZ (1.56 × 106 ± 1.60 × 105 copies g−1 mixture-soil−1) of litter bags and bottoms in HSHAD were higher than those in HHD, which indicated that the combined heterotrophic and autotrophic denitrification can increase the abundance of denitrificans containing narG, nirS, and nosZ, thus leading to better denitrification performance.


1997 ◽  
Vol 35 (5) ◽  
pp. 1-10 ◽  
Author(s):  
K. R. Reddy ◽  
E. M. D'Angelo

Wetlands support several aerobic and anaerobic biogeochemical processes that regulate removal/retention of pollutants, which has encouraged the intentional use of wetlands for pollutant abatement. The purpose of this paper is to present a brief review of key processes regulating pollutant removal and identify potential indicators that can be measured to evaluate treatment efficiency. Carbon and toxic organic compound removal efficiency can be determined by measuring soil or water oxygen demand, microbial biomass, soil Eh and pH. Similarly, nitrate removal can be predicted by dissolved organic C and microbial biomass. Phosphorus retention can be described by the availability of reactive Fe and Al in acid soils and Ca and Mg in alkaline soils. Relationships between soil processes and indicators are useful tools to transfer mechanistic information between diverse types of wetland treatment systems.


Sign in / Sign up

Export Citation Format

Share Document