scholarly journals 3D printing in urology as a trend in personalized medicine

2021 ◽  
Vol 14 (3) ◽  
pp. 28-39
Author(s):  
B.G. Guliev ◽  
◽  
B.K. Komyakov ◽  
A.E. Talyshinskii ◽  
◽  
...  

Introduction. 3D printing technology is being actively introduced into the urological practice. Apart from improving of patients counselling, this technology allows for improved planning end performance of surgery. Aim of study. To determine the current state of three-dimensional printing in the urological practice. Materials and methods. Embase, Medline, Google Scholar, Scopus databases were searched to find related publications until September 2020. Inclusion criteria were: the availability of the full article, the use of 3D models for teaching patients or residents, and their use in planning and performing surgery on patients over 18 years of age. Results. One hundred and ninety seven publications were included, of which 40 were selected for a further analysis. 11 articles were related to the study of the usefulness of printed models in counseling patients with urolithiasis, planning and training of retrograde lithotripsy and percutaneous nephrolithotripsy. In 20 articles, the printed model was used to counsel patients with renal neoplasms, planning and intraoperative navigation. In 9 papers, the results of the use of printed models in communication with patients with prostate tumor, in improving the determination of its localization and planning of the upcoming surgery were published. Conclusion. The creation of three-dimensional printed models is promising in urology. Despite the current limitations this field is becoming more accessible for both patients and doctors.

Author(s):  
Hui Wang ◽  
Zhonghan Wang ◽  
He Liu ◽  
Jiaqi Liu ◽  
Ronghang Li ◽  
...  

Although there have been remarkable advances in cartilage tissue engineering, construction of irregularly shaped cartilage, including auricular, nasal, tracheal, and meniscus cartilages, remains challenging because of the difficulty in reproducing its precise structure and specific function. Among the advanced fabrication methods, three-dimensional (3D) printing technology offers great potential for achieving shape imitation and bionic performance in cartilage tissue engineering. This review discusses requirements for 3D printing of various irregularly shaped cartilage tissues, as well as selection of appropriate printing materials and seed cells. Current advances in 3D printing of irregularly shaped cartilage are also highlighted. Finally, developments in various types of cartilage tissue are described. This review is intended to provide guidance for future research in tissue engineering of irregularly shaped cartilage.


2020 ◽  
Author(s):  
Chase Tenewitz ◽  
Rebecca Le ◽  
Mauricio Hernandez ◽  
Saif Baig ◽  
Travis Meyer

Abstract Objectives: The purpose of this review was to assess the use of three-dimensional (3D) printing in interventional radiology (IR) simulation experiences.Materials and Methods: A literature query was conducted in April 2020 for articles discussing 3D printing for simulations in numerous library databases using various search terms.Results: While trainee feedback is generally supportive of 3D printing within the field of IR, current applications utilizing 3D printed models are heterogeneous, reflecting a lack of best practices standards in the realm of medical education.Conclusions: Presently available literature endorses the use of 3D printing within IR. 3D printing has the potential to expand within the field, as it offers a straightforward, sustainable, and reproducible means for hands-on training that ought to be standardized.


2016 ◽  
Vol 24 (1) ◽  
pp. 82-88 ◽  
Author(s):  
Chi Li ◽  
Tsz Fung Cheung ◽  
Vei Chen Fan ◽  
Kin Man Sin ◽  
Chrisity Wai Yan Wong ◽  
...  

Three-dimensional (3D) printing is a rapidly advancing technology in the field of surgery. This article reviews its contemporary applications in 3 aspects of surgery, namely, surgical planning, implants and prostheses, and education and training. Three-dimensional printing technology can contribute to surgical planning by depicting precise personalized anatomy and thus a potential improvement in surgical outcome. For implants and prosthesis, the technology might overcome the limitations of conventional methods such as visual discrepancy from the recipient’s body and unmatching anatomy. In addition, 3D printing technology could be integrated into medical school curriculum, supplementing the conventional cadaver-based education and training in anatomy and surgery. Future potential applications of 3D printing in surgery, mainly in the areas of skin, nerve, and vascular graft preparation as well as ear reconstruction, are also discussed. Numerous trials and studies are still ongoing. However, scientists and clinicians are still encountering some limitations of the technology including high cost, long processing time, unsatisfactory mechanical properties, and suboptimal accuracy. These limitations might potentially hamper the applications of this technology in daily clinical practice.


2020 ◽  
Vol 22 (1) ◽  
pp. 113-118
Author(s):  
V V Khominets ◽  
S A Peleshok ◽  
D A Volov ◽  
M V Titova ◽  
M I Eliseeva ◽  
...  

In the last decade, the range of applications of three-dimensional printing (3D printing) in surgery has been expanding. In traumatology, orthopedics and rehabilitation of injuries of the upper limbs, there is growing interest in creating splints and orthoses that can take into account the individual anatomical features of the human body. Traditional orthoses and splints are not always convenient and can lead to undesirable consequences such as pain, swelling, pressure, or even lack of therapeutic effect. The prospects of 3D printing technology in medicine from the beginning of its mass introduction, the features of modeling, manufacturing and application of means for immobilization of injuries and diseases of the upper extremities according to domestic and foreign publications over the past 5 years are considered. The data on the functionality of 3D-printed tire structures and orthoses used to immobilize the upper limb are analyzed in comparison with traditional methods of fixation. Three-dimensional images of patients with injuries obtained using computed tomography, magnetic resonance imaging or using a 3D scanner can be used to create virtual 3D models of the forearm, wrist, fingers of the patient, and 3D printing with these anatomical models allows you to create personalized tires and orthoses. Thanks to an individual approach and the use of various solutions, three-dimensional printing can be widely used in traumatology and orthopedics. As a result of this approach, it becomes possible to implement and effectively use a variety of solutions that will find support in healthcare.


Author(s):  
K. G. Siree ◽  
T. M. Amulya ◽  
T. M. Pramod Kumar ◽  
S. Sowmya ◽  
K. Divith ◽  
...  

Three-dimensional (3D) printing is a unique technique that allows for a high degree of customisation in pharmacy, dentistry and in designing of medical devices. 3D printing satiates the increasing exigency for consumer personalisation in these fields as custom-made medicines catering to the patients’ requirements are novel advancements in drug therapy. Current research in 3D printing indicates towards reproducing an organ in the form of a chip; paving the way for more studies and opportunities to perfecting the existing technique. In addition, we will also attempt to shed light on the impact of 3D printing in the COVID-19 pandemic.


2016 ◽  
Author(s):  
Hongxing Luo ◽  
Zhongmin Wang

We comment on the recent developments and problems of three-dimensional printing in cardiology. Since there are currently no standards or consensuses for 3D printing in clinical medicine and the technology is at its infancy in cardiology, it’s very important to detail the procedures to allow more similar studies to further our understandings of this novel technology. Most studies have employed computed tomography to obtain source data for 3D printing, the use of real-time 3D transesophageal echocardiography for data acquisition remains rare, so it would be very valuable and inspiring to detail the image postprocessing steps, or the reliability of the study results will be doubtful.


Author(s):  
Diogo José Horst ◽  
Pedro Paulo Andrade Junior

Conductive and magnetic filaments are revolutionizing three-dimensional printing (3DP) to a new level. This review study presents the current state of the art on the subject, summarizing recent high impact studies about main advances regarding the application of 3DP filaments based on carbon nanostructures such as graphene, carbon fibers, nanotubes, and conductive carbon black embedded in a polymer matrix, by reviewing its main characteristics and showing the main producers and also the products available on the market. The availability of inexpensive, reliable, and electrically conductive material will be indispensable for the fabrication of circuits and sensors before the full potential of 3DP for customized products incorporating electrical elements can be fully explored.


2018 ◽  
Vol 9 (4) ◽  
pp. 454-458 ◽  
Author(s):  
Sarah A. Chen ◽  
Chin Siang Ong ◽  
Nagina Malguria ◽  
Luca A. Vricella ◽  
Juan R. Garcia ◽  
...  

Purpose: Patients with hypoplastic left heart syndrome (HLHS) present a diverse spectrum of aortic arch morphology. Suboptimal geometry of the reconstructed aortic arch may result from inappropriate size and shape of an implanted patch and may be associated with poor outcomes. Meanwhile, advances in diagnostic imaging, computer-aided design, and three-dimensional (3D) printing technology have enabled the creation of 3D models. The purpose of this study is to create a surgical simulation and training model for aortic arch reconstruction. Description: Specialized segmentation software was used to isolate aortic arch anatomy from HLHS computed tomography scan images to create digital 3D models. Three-dimensional modeling software was used to modify the exported segmented models and digitally design printable customized patches that were optimally sized for arch reconstruction. Evaluation: Life-sized models of HLHS aortic arch anatomy and a digitally derived customized patch were 3D printed to allow simulation of surgical suturing and reconstruction. The patient-specific customized patch was successfully used for surgical simulation. Conclusions: Feasibility of digital design and 3D printing of patient-specific patches for aortic arch reconstruction has been demonstrated. The technology facilitates surgical simulation. Surgical training that leads to an understanding of optimal aortic patch geometry is one element that may potentially influence outcomes for patients with HLHS.


2020 ◽  
Vol 57 (8) ◽  
pp. 1041-1044
Author(s):  
Matthias Schlund ◽  
Jean-Marc Levaillant ◽  
Romain Nicot

Parental prenatal counseling is of paramount significance since parents often experience an emotional crisis with feelings of disappointment and helplessness. Three-dimensional (3D) printed model of the unborn child’s face presenting with cleft lip and palate, based on ultrasonographic information, could be used to provide visual 3D information, further enhancing the prospective parent’s comprehension of their unborn child’s pathology and morphology, helping them to be psychologically prepared and improving the communication with the caretaking team. Prospective parents appreciate if prenatal counseling is available with the most detailed information as well as additional resources. The technique necessary to create 3D models after ultrasonographic information is explained, and the related costs are evaluated. The use of such models in parental education is then discussed.


Sign in / Sign up

Export Citation Format

Share Document