scholarly journals The role of water-drive systems of ancient sedimentary basins in the processes of oil and gas accumulation

Author(s):  
L.A. Abukova ◽  
M.E. Seliverstova ◽  
G.Yu. Isaeva

The article presents the authors’ ideas about the role of post-expulsion water-drive systems in localization of hydrocarbon deposits. It substantiates the key factors of hydrodynamic stagnation, which is a characteristic feature of the large depths of ancient sedimentary basins; it reveals that, within their bounds, in conditions of regional reservoir pressure deficiency the formation of synclinal hydrocarbon deposits is possible, and under ultra-high reservoir pressure – that of zones of oil and gas accumulation of autoclave type, within which the hydrogenation of mixed humus–sapropel organic matter is viable.

2019 ◽  
Vol 3 (180) ◽  
pp. 60-75
Author(s):  
Oleksandr Prykhodko ◽  
Ihor Hrytsyk ◽  
Ihor Kurovets ◽  
Svitlana Melnychuk

For the predictive appraisal of the perspective exploratory territories as well as prediction of separate producing horizons of prospecting and exploration areas for oil and gas it is necessary to establish the regularities of distribution of already explored deposits of hydrocarbons with structural-tectonic construction, lithological-stratigraphic features, hydrogeological and geothermobaric conditions of oil- and gas-bearing region taken into account. Interconnection between geothermobaric parameters and the phase state of hydrocarbons in the vertical section should be an important factor for the solution of the posed task. Within the limits of the Eastern oil- and gas-bearing area of Ukraine, the spatial zoning is established in the location of gas, oil and gas-condensate deposits. As a whole, the distribution of temperatures and pressures at different depths, average geothermal gradients, gradients of the lithological-stratigraphical horizons of the same name (sustained both as to the area and thickness) are closely connected with the deep geological structure of the studied region (area) and confirm the existing notions of the role of tectonic, lithological-stratigraphic and hydrogeological factors in the formation of the thermal regime of sedimentary basins. Vertical zoning of the distribution of hydrocarbon deposits of oil- and gas-bearing horizons was developed according to geothermobaric parameters of the north-western part of the Dnieper-Donets Depression and 8 areas from 15 ones of the Eastern oil- and gas-bearing region, namely: Monastyryshche-Sofiivka and Talalaivka-Rybalske oil- and gas-bearing areas, Glynsk-Solokha gas- and oil-bearing area, Ryabukhyne-Northern Golubivka and Mashivka-Shebelynka gas-bearing areas, Rudenky-Proletarske oil- and gas-bearing region, Krasna Rika gas-bearing area and also oil- and gas-bearing area of the Northern edge. Revealed regularities of the distribution of formation temperatures, pressures, geothermal and thermobaric coefficients with peculiarities of the tectonic structure of the Dnieper-Donets graben taken into account will make it possible to solve theoretical problems connected with hydrocarbon migration, the formation and preservation of deposits in more well-founded way that will make it possible to conduct prospecting for new fields at great depths within the studied territory more effectively.


2021 ◽  
pp. 23-31
Author(s):  
Y. I. Gladysheva

Nadym-Pursk oil and gas region has been one of the main areas for the production of hydrocarbon raw materials since the sixties of the last century. A significant part of hydrocarbon deposits is at the final stage of field development. An increase in gas and oil production is possible subject to the discovery of new fields. The search for new hydrocarbon deposits must be carried out taking into account an integrated research approach, primarily the interpretation of seismic exploration, the creation of geological models of sedimentary basins, the study of geodynamic processes and thermobaric parameters. Statistical analysis of geological parameters of oil and gas bearing complexes revealed that the most promising direction of search are active zones — blocks with the maximum sedimentary section and accumulation rate. In these zones abnormal reservoir pressures and high reservoir temperatures are recorded. The Cretaceous oil and gas megacomplex is one of the main prospecting targets. New discovery of hydrocarbon deposits are associated with both additional exploration of old fields and the search for new prospects on the shelf of the north. An important area of geological exploration is the productive layer of the Lower-Berezovskaya subformation, in which gas deposits were discovered in unconventional reservoirs.


2003 ◽  
Vol 43 (1) ◽  
pp. 117 ◽  
Author(s):  
C.J. Boreham ◽  
J.E. Blevin ◽  
A.P. Radlinski ◽  
K.R. Trigg

Only a few published geochemical studies have demonstrated that coals have sourced significant volumes of oil, while none have clearly implicated coals in the Australian context. As part of a broader collaborative project with Mineral Resources Tasmania on the petroleum prospectivity of the Bass Basin, this geochemical study has yielded strong evidence that Paleocene–Eocene coals have sourced the oil and gas in the Yolla, Pelican and Cormorant accumulations in the Bass Basin.Potential oil-prone source rocks in the Bass Basin have Hydrogen Indices (HIs) greater than 300 mg HC/g TOC. The coals within the Early–Middle Eocene succession commonly have HIs up to 500 mg HC/g TOC, and are associated with disseminated organic matter in claystones that are more gas-prone with HIs generally less than 300 mg HC/g TOC. Maturity of the coals is sufficient for oil and gas generation, with vitrinite reflectance (VR) up to 1.8 % at the base of Pelican–5. Igneous intrusions, mainly within Paleocene, Oligocene and Miocene sediments, produced locally elevated maturity levels with VR up to 5%.The key events in the process of petroleum generation and migration from the effective coaly source rocks in the Bass Basin are:the onset of oil generation at a VR of 0.65% (e.g. 2,450 m in Pelican–5);the onset of oil expulsion (primary migration) at a VR of 0.75% (e.g. 2,700–3,200 m in the Bass Basin; 2,850 m in Pelican–5);the main oil window between VR of 0.75 and 0.95% (e.g. 2,850–3,300 m in Pelican–5); and;the main gas window at VR >1.2% (e.g. >3,650 m in Pelican–5).Oils in the Bass Basin form a single oil population, although biodegradation of the Cormorant oil has resulted in its statistical placement in a separate oil family from that of the Pelican and Yolla crudes. Oil-to-source correlations show that the Paleocene–Early Eocene coals are effective source rocks in the Bass Basin, in contrast to previous work, which favoured disseminated organic matter in claystone as the sole potential source kerogen. This result represents the first demonstrated case of significant oil from coal in the Australian context. Natural gases at White Ibis–1 and Yolla–2 are associated with the liquid hydrocarbons in their respective fields, although the former gas is generated from a more mature source rock.The application of the methodologies used in this study to other Australian sedimentary basins where commercial oil is thought to be sourced from coaly kerogens (e.g. Bowen, Cooper and Gippsland basins) may further implicate coal as an effective source rock for oil.


Author(s):  
E. E. Kozhevnikova ◽  

The article presents materials on the study of the generation potential of the Emsko-Timan deposits of the Udmurt Republic. The study of the conditions of sedimentary accumulation, geochemical facies at the stage of diagenesis was carried out. Quantitative assessment of the generation potential of the studied complex is given, and the density of organic matter of rocks is calculated that made it possible to identify the local zones of distribution of oil and gas source formations. Correlation of oils of the studied complex with oils above and below-lying complexes has been carried out. It was found that the process of generation of hydrocarbon deposits of the studied complex had a mixed mechanism. Probably, this process involved not only the oil and gas source formations of the terrigenous Devonian, but also the oil and gas source formations above and below the complexes.


2019 ◽  
pp. 79-91
Author(s):  
L. A. Abukova ◽  
Yu. A. Volozh ◽  
A. N. Dmitrievsky ◽  
M. P. Antipov

In our paper we produce new evidence of the tectonosphere and hydrosphere structure of oil and gas sedimentary basins and confirm significant influence of geofluid-dynamic processes on formation of hydrocarbon accumulations in the crust at the great depths. In our opinion the theory based on obsolete views on the tectonosphere structure lessen the importance the sedimentary migration theory of hydrocarbon generation. We prognosticate a particular stagnant type of post-elysionic water-drive systems in the crust at the great depths in conditions of increased hydrodynamic isolation. Absence of regionally sustained vertical and lateral drainage layers characterizes geological environment where stagnant type developed, and, corollary, fluids outflow into external environment is practically unfeasible. The subsalt filling complexes of the epicontinental deepwater basins are included into the post-elysionic water-drive systems. These complexes occur at the great depths and possibility of striking unique and large oil and gas fields there is inherent. We propose a system of fluid-dynamic conditions for preserving hydrocarbon accumulations in the lower crust as a result of developing sedimentary-migration theory for oil and gas formation. We consider the refinement of methods for prospecting and exploration large deposits at the great depths will pave the way for expanded reproduction of hydrocarbon reserves in the “old” oil and gas producing regions in our country.


2018 ◽  
pp. 23-29
Author(s):  
Yu. Ya. Bolshakov ◽  
E. Yu. Neyolova

The article considers the large gas fields geology aspects of which are totally in conflict with the principles of anticline theory of hydrocarbon accumulation. These fields are situated in orogenic formations and associated with large synclinal structures. Any seals and lateral screens are absent. Gas saturated reservoirs are surrounded by relatively large-porous water-saturated sandstones and retained in pools due to the capillary forces. The nature of these fields is determined by the molecular physics laws, which effect in oil-wet porous media. These areas are abundant within the geosynclinal systems where synclinal structures can be considered as perspective for oil-and-gas content.


2013 ◽  
pp. 87-92
Author(s):  
L. Martynyuk ◽  
I. Karpenko ◽  
O. Okrepkyi

Authors substantiate that this territory in carbon time developed mainly in the alluvial plain situation. Also we analyzed prospective for oil and gas sedimentation environment. The most prospective areas evaluated to be distributed in branched rivers.   


2021 ◽  
Vol 62 (08) ◽  
pp. 878-886
Author(s):  
L.A. Abukova ◽  
Yu.A Volozh

Abstract —We substantiate certain ideas concerning the key role of fluid-geodynamic processes in the evolvement of hydrocarbon accumulations at great depths, in the Earth’s crust. The presented geodynamic model of oil and gas accumulation is based on updated ideas of the structure of the Earth’s tectosphere, which includes plate, preplate, and folded complexes, and the model makes clearer the spatial scale of the organic matter transformation into hydrocarbons of the oil series. In the bottom layers of the Earth’s crust, we predict the existence of a special stagnation type of water-drive systems with the following distinguishing features: (a) different scales of manifestation, from local to regional; (b) a limited nature of processes of water exchange with the external environment; (c) absence of persistent drainage horizons (beds and interbeds); (d) alignment of hydrodynamic potentials in terms of depths and laterals; and (e) increasing importance of lithohydrochemical and organic-chemistry factors in the development of the void space of the fluid host medium. In their inner space, systems with difficult water exchange can exercise control over the evolvement and preservation of autoclave hydrocarbon systems for a long time, the key feature of the autoclave systems being spatial coincidence (localization) of the processes of oil and gas generation and accumulation. We assume that, in the settings of all-round compression, hydrodynamic instability, and no drainage, occurrence of productive zones is controlled by foci of low pore (reservoir) pressures rather than by local hypsometric highs. We present results of prediction of the development of water-drive stagnation systems occurring in the subsalt deposits of the Caspian depression within the unpenetrated areas of the subsalt profile. For the sedimentary cover at large (and ultralarge) depths, a prediction of reservoir pressures was made, which can be regarded as a necessary component in any prediction of oil and gas potential, since it makes it possible to contour some new (previously unknown) industrially significant zones of hydrocarbon accumulation.


Author(s):  
R.R. Gumerova

The article examines the reasons for the formation of vertical hydrochemical inversion within particular oil and gas basins and points out the role of waters of different genesis in the development of this phenomenon. The following processes of reverse hydrochemical zoning in the sedimentary cover are analyzed: thickening of heavy clay strata and the related squeezing of loosely bound waters, dehydration of clay minerals and catagenic fluid generation accompanying the transformation of organic matter into hydrocarbons of the petroleum series. The hydrochemical inversion at great depths is noted to occur and persist in the environment of the passive hydrodynamic regime; in closed water-drive systems, the demineralization of waters with depth causes the decrease in the hydrodynamic potential gradient, determining the migration pattern not only of water but also of hydrocarbons and, consequently, the location of oil and gas accumulation zones.


Author(s):  
V. N. Kholodov

The article discusses the patterns of placement of mud volcanoes, their spatial connection with tectonic faults, anticlinal uplifts, oil and gas fields. The connection of mud volcanic activity with ultrahigh pressures arising in the clay strata of the stratisphere as a result of phase transformations of clay minerals and organic matter is argued. The role of earthquakes in the formation of fractured clays, increasing their permeability and the formation of mud crates is emphasized. On the example of the mud volcano Aligula (Turkmenistan), the processes of dilution of sandstones and clays, the formation of volcanic mud-crates are considered.


Sign in / Sign up

Export Citation Format

Share Document