scholarly journals HPTLC-DPPH• and HPTLC-tyrosinase methods for hot water-soluble contents of kumquat, limequat and mexican lime fruit powders

2021 ◽  
Vol 25(5) (25(5)) ◽  
pp. 569-580
Author(s):  
Hale Gamze AĞALAR ◽  
Burak TEMİZ
Keyword(s):  
1986 ◽  
Vol 66 (2) ◽  
pp. 377-381 ◽  
Author(s):  
P. A. SCHUPPLI

Soils were extracted by hot water, dilute CaCl2, and by mannitol-CaCl2 solutions and boron was determined by either azomethine-H or the curcumin method. Results were strongly method dependent; in particular results by the simplest method, mannitol-CaCl2, were generally lower and not highly correlated (r = 0.64) with those by the recommended procedure. This procedure involves extraction with hot distilled H2O (2:1 solution:soil), centrifugation, filtration, color development with azomethine-H and correction for background color. Extractable boron values by this procedure ranged from 0.1 to 1.4 mg kg−1. Background color can be further reduced by the substitution of 0.02 M CaCl2 for distilled water. Key words: CSSC reference soil samples, hot-water-soluble boron


1974 ◽  
Vol 14 (68) ◽  
pp. 343 ◽  
Author(s):  
RJ Jones

Experiments with Siratro were conducted at Samford, south east Queensland to study the effects of previous cutting and defoliation treatments on regrowth. In the first experiment, swards of Siratro were cut at 7.5 cm above ground level every 4 weeks, every 8 weeks or cut once at 16 weeks during spring and summer. Regrowth of all treatments over ten weeks was measured after varying (by leaf removal) the stubble leaf area index (LAI) of the plots cut every four weeks. Pattern of regrowth yield was similar for all treatments with a pronounced lag phase after cutting. Regrowth yield after 10 weeks differed between treatments and was linearly related (P < 0.01 ) to residual LAI in the stubble at the start of regrowth. In the absence of stubble leaves, plots previously cut at 16 weeks or at 8 weeks yielded marginally more than those cut every 4 weeks. There were no marked treatment differences in gross root morphology other than a two fold increase in stolon rooting for the 16-week treatment. Nitrogen content of the roots (mean 1.38 per cent) was unaffected by treatment, but the per cent hot water soluble sugars were lower for the 16 week defoliation treatment than for the 8-week and the 4-week treatments. In the second experiment individual plants were cut to a uniform stubble every 4 weeks and either 0, 5, or 10 leaves were left. Dry weight of regrowth and stolon development were greatest when most leaves were left. Two thirds of the plants died after six cuttings with complete defoliation but none died when either 5 or 10 leaves were retained. Plant survival was not related to plant yield or degree of stoloniferous development. However, there was a strong correlation between stolon number and plant yield under this intensive cutting regime. The practical implication of the results in the management of Siratro is discussed.


Molecules ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 212 ◽  
Author(s):  
Xiaopeng Peng ◽  
Shuangxi Nie ◽  
Xiaoping Li ◽  
Xiong Huang ◽  
Quanzi Li

Sweet maize stems were treated with hot water and potassium hydroxide to fractionate hemicellulosic polymers. The results showed that the water-soluble hemicelluloses were mainly composed of glucose (27.83%), xylose (27.32%), and galactose (16.81%). In comparison, alkali-soluble hemicelluloses fractionated by acidification and a graded ethanol solution (10%, 20%, 35%, 50%, 65%, and 80%) were mainly composed of xylose (69.73 to 88.62%) and arabinose (5.41 to 16.20%). More highly branched hemicelluloses tended to be precipitated in a higher concentration of ethanol solution, as revealed by the decreasing xylose to arabinose ratio from 16.43 to 4.21. Structural characterizations indicated that alkali-soluble hemicelluloses fractionated from sweet maize stems were mainly arabinoxylans. The results provided fundamental information on hemicelluloses composition and structure and their potential utilization in the fields of biofuels, biochemicals, and biomaterials.


Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2740 ◽  
Author(s):  
Ekaterina Baeva ◽  
Roman Bleha ◽  
Ekaterina Lavrova ◽  
Leonid Sushytskyi ◽  
Jana Čopíková ◽  
...  

Oyster mushrooms are an interesting source of biologically active glucans and other polysaccharides. This work is devoted to the isolation and structural characterization of polysaccharides from basidiocarps of the cultivated oyster mushroom, Pleurotus ostreatus. Five polysaccharidic fractions were obtained by subsequent extraction with cold water, hot water and two subsequent extractions with 1 m sodium hydroxide. Branched partially methoxylated mannogalactan and slightly branched (1→6)-β-d-glucan predominated in cold- and hot-water-soluble fractions, respectively. Alternatively, these polysaccharides were obtained by only hot water extraction and subsequent two-stage chromatographic separation. The alkali-soluble parts originating from the first alkali extraction were then fractionated by dissolution in dimethyl sulfoxide (DMSO). The polysaccharide insoluble in DMSO was identified as linear (1→3)-α-d-glucan, while branched (1→3)(1→6)-β-d-glucans were found to be soluble in DMSO. The second alkaline extract contained the mentioned branched β-d-glucan together with some proteins. Finally, the alkali insoluble part was a cell wall complex of chitin and β-d-glucans.


Antioxidants ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 189 ◽  
Author(s):  
Pedro A. R. Fernandes ◽  
Sónia S. Ferreira ◽  
Rita Bastos ◽  
Isabel Ferreira ◽  
Maria T. Cruz ◽  
...  

Apple pomace is a by-product of apple processing industries with low value and thus frequent disposal, although with valuable compounds. Acidified hot water extraction has been suggested as a clean, feasible, and easy approach for the recovery of polyphenols. This type of extraction allowed us to obtain 296 g of extract per kg of dry apple pomace, including 3.3 g of polyphenols and 281 g of carbohydrates. Ultrafiltration and solid-phase extraction using C18 cartridges of the hot water extract suggested that, in addition to the apple native polyphenols detected by ultra-high-pressure liquid chromatography coupled to a diode-array detector and mass spectrometry UHPLC-DAD-ESI-MSn, polyphenols could also be present as complexes with carbohydrates. For the water-soluble polyphenols, antioxidant and anti-inflammatory effects were observed by inhibiting chemically generated hydroxyl radicals (OH•) and nitrogen monoxide radicals (NO•) produced in lipopolysaccharide-stimulated macrophages. The water-soluble polyphenols, when incorporated into yogurt formulations, were not affected by fermentation and improved the antioxidant properties of the final product. This in vitro research paves the way for agro-food industries to achieve more diversified and sustainable solutions towards their main by-products.


Marine Drugs ◽  
2019 ◽  
Vol 17 (9) ◽  
pp. 532
Author(s):  
Yang ◽  
Chiu ◽  
Lu ◽  
Liu ◽  
Chiang

This study investigated the anti-obesity effect of a polysaccharide-rich red algae Gelidium amansii hot-water extract (GHE) in high-fat (HF) diet-induced obese hamsters. GHE contained 68.54% water-soluble indigestible carbohydrate polymers. Hamsters were fed with a HF diet for 5 weeks to induce obesity, and then randomly divided into: HF group, HF with 3% guar gum diet group, HF with 3% GHE diet group, and HF with orlistat (200 mg/kg diet) group for 9 weeks. The increased weights of body, liver, and adipose in the HF group were significantly reversed by GHE supplementation. Lower plasma leptin, tumor necrosis factor-α, and interleukin-6 levels were observed in the GHE+HF group compared to the HF group. GHE also increased the lipolysis rate and decreased the lipoprotein lipase activity in adipose tissues. GHE induced an increase in the phosphorylation of AMP-activated protein kinase (AMPK) and the protein expressions of peroxisome proliferator-activated receptor alpha (PPARα) and uncoupling protein (UCP)-2 in the livers. The decreased triglyceride and total cholesterol in the plasma and liver were also observed in obese hamsters fed a diet with GHE. These results suggest that GHE exerts a down-regulation effect on hepatic lipid metabolism through AMPK phosphorylation and up-regulation of PPARα and UCP-2 in HF-induced obese hamsters.


2012 ◽  
Vol 58 (4) ◽  
pp. 131-137
Author(s):  
Vladimír Šimanský ◽  
Erika Tobiašová

Abstract The effect of different doses of NPK fertilizer on the changes in quantity and quality of soil organic matter (SOM) in Rendzic Leptosol was evaluated. Soil samples were taken from three treatments of different fertilization: (1) control - without fertilization, (2) NPK 1 - doses of NPK fertilizer in 1st degree intensity for vine, and (3) NPK 3 - doses of NPK fertilizer in 3rd degree intensity for vine in the vineyard. Soil samples were collected in years 2008-2011 during the spring. The higher dose of NPK fertilizer (3rd degree intensity of vineyards fertilization) was responsible for the higher content of labile carbon (by 21% in 0-0.3 m and by 11% as average of the two depths 0-0.3 m and 0.3-0.6 m). However, by application of a higher dose of NPK (1.39%) in comparison to no fertilizer treatment (1.35%) or NPK 1 (1.35%) the tendency of total organic carbon content increase and hot-water soluble carbon decrease were determined. Fertilization had a negative effect on SOM stability. Intensity of fertilization affected the changes in quantity and quality of SOM; therefore it is very important to pay attention to the quantity and quality of organic matter in productive vineyards.


2019 ◽  
Vol 125 (3) ◽  
pp. 459-469 ◽  
Author(s):  
María González-Hourcade ◽  
Marcia R Braga ◽  
Eva M del Campo ◽  
Carmen Ascaso ◽  
Cristina Patiño ◽  
...  

Abstract Background and Aims One of the most distinctive features of desiccation-tolerant plants is their high cell wall (CW) flexibility. Most lichen microalgae can tolerate drastic dehydration–rehydration (D/R) conditions; however, their mechanisms of D/R tolerance are scarcely understood. We tested the hypothesis that D/R-tolerant microalgae would have flexible CWs due to species-specific CW ultrastructure and biochemical composition, which could be remodelled by exposure to cyclic D/R. Methods Two lichen microalgae, Trebouxia sp. TR9 (TR9, adapted to rapid D/R cycles) and Coccomyxa simplex (Csol, adapted to seasonal dry periods) were exposed to no or four cycles of desiccation [25–30 % RH (TR9) or 55–60 % RH (Csol)] and 16 h of rehydration (100 % RH). Low-temperature SEM, environmental SEM and freeze-substitution TEM were employed to visualize structural alterations induced by D/R. In addition, CWs were extracted and sequentially fractionated with hot water and KOH, and the gel permeation profile of polysaccharides was analysed in each fraction. The glycosyl composition and linkage of the main polysaccharides of each CW fraction were analysed by GC–MS. Key Results All ultrastructural analyses consistently showed that desiccation caused progressive cell shrinkage and deformation in both microalgae, which could be rapidly reversed when water availability increased. Notably, the plasma membrane of TR9 and Csol remained in close contact with the deformed CW. Exposure to D/R strongly altered the size distribution of TR9 hot-water-soluble polysaccharides, composed mainly of a β-3-linked rhamnogalactofuranan and Csol KOH-soluble β-glucans. Conclusions Cyclic D/R induces biochemical remodelling of the CW that could increase CW flexibility, allowing regulated shrinkage and expansion of D/R-tolerant microalgae.


Sign in / Sign up

Export Citation Format

Share Document