scholarly journals Synthesis, structure and morphology of composites based on magnesium ferrite and carbon nitride

Author(s):  
A. I. Ivanets

The composites based on magnesium ferrite and carbon nitride were synthesized by the sol-gel method in combination with thermochemical condensation. The effect of the synthesis method on the crystalline structure, the phase and chemical composition, and the morphology of composites was studied by the X-ray diffraction, IR spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy techniques. It was found that, depending on the conditions of the sol-gel stages, the initiation of self-combustion high-temperature synthesis and melanin thermochemical condensation, composites with different crystalline structure and morphology were prepared. The obtained results are important for the development of the heterogeneous Fenton- and photo-Fenton catalysts based on magnesium ferrite and carbon nitride composites.

2020 ◽  
Vol 43 (1) ◽  
pp. 26-42 ◽  
Author(s):  
Zahra Hajian Karahroudi ◽  
Kambiz Hedayati ◽  
Mojtaba Goodarzi

AbstractThis study presents a preparation of SrFe12O19– SrTiO3 nanocomposite synthesis via the green auto-combustion method. At first, SrFe12O19 nanoparticles were synthesized as a core and then, SrTiO3 nanoparticles were prepared as a shell for it to manufacture SrFe12O19–SrTiO3 nanocomposite. A novel sol-gel auto-combustion green synthesis method has been used with lemon juice as a capping agent. The prepared SrFe12O19–SrTiO3 nanocomposites were characterized by using several techniques to characterize their structural, morphological and magnetic properties. The crystal structures of the nanocomposite were investigated via X-ray diffraction (XRD). The morphology of SrFe12O19– SrTiO3 nanocomposite was studied by using a scanning electron microscope (SEM). The elemental composition of the materials was analyzed by an energy-dispersive X-ray (EDX). Magnetic properties and hysteresis loop of nanopowder were characterized via vibrating sample magnetometer (VSM) in the room temperature. Fourier transform infrared spectroscopy (FTIR) spectra of the samples showed the molecular bands of nanoparticles. Also, the photocatalytic behavior of nanocomposites has been checked by the degradation of azo dyes under irradiation of ultraviolet light.


1995 ◽  
Vol 405 ◽  
Author(s):  
Bokhimi ◽  
J. L. Boldu ◽  
E. Muñoz ◽  
O. Novaro ◽  
T. Lopez ◽  
...  

AbstractThe temperature evolution of the crystalline structure of the nanophases found in sol-gel MgO, TiO2 and ZrO2 systems was analyzed by performing x-ray powder diffraction. The structure and concentration of each phase was determined by using the Rietveld technique. The effect of doping MgO and TiO2 systems with platinum was also studied.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Pingting He ◽  
Jie Tao ◽  
Jianjun Xue ◽  
Yulan Chen

A homogeneous and transparent titania (TiO2) sol with nanosized anatase TiO2particles was prepared by hydrothermal synthesis method. The transmission electron microscope and X-ray diffraction were used to characterize the structure and morphology of particulates in the TiO2sol and purchased TiO2powder. The results show that the homogeneous anatase crystalline phase was formed and the size of the spindle-like particle in sol was about 20 nm in width and 150 nm in average length, and the particulates of the purchased powder were globular-like about 50 nm in diameter. In addition, a consistent set of in vitro experimental protocols was used to study the effects of nano-TiO2sol as prepared and nano-TiO2powder on mouse peritoneal macrophage. The cytotoxicity tests in vitro indicate that, with the increasing of TiO2sol concentration contaminated with the cells, the relative proliferation rate of macrophage cells was improved slightly after the cells contaminated for 24 h, but it reduced rapidly after contaminated for 48 h. The purchased nano-TiO2powder inhibited the growth of the cells obviously as cultivating with macrophage both for 24 h and 48 h.


2011 ◽  
Vol 04 (01) ◽  
pp. 61-64 ◽  
Author(s):  
ZHAOHUI LI ◽  
JIAOJUN TANG ◽  
JIE YANG ◽  
CHENG CHENG ◽  
QIZHEN XIAO ◽  
...  

A porous vanadium pentoxide ( V2O5 ) material was prepared through a facile sol-gel route using β-cyclodextrin (β-CD) as template reagent. Its crystal structure and morphology were characterized by X-ray diffraction and scanning electron microscopy, respectively. The electrochemical properties of the as-prepared V2O5 in 1.0 mol l-1 Li2SO4 aqueous electrolyte were investigated by galvanostatic charging/discharging and cyclic voltammetry. The results revealed that the porous V2O5 could deliver the average capacities of 67, 54 and 42 mAh g-1 at the rates of 0.1, 0.5 and 2 C, respectively. The cycling performances of the V2O5/LiMn2O4 cells suggested that the porous V2O5 material could be used as an anode material for aqueous rechargeable lithium-ion batteries.


2011 ◽  
Vol 1326 ◽  
Author(s):  
Rene Fabian Cienfuegos ◽  
Leonardo Chávez Guerrero ◽  
Sugeheidy Carranza ◽  
Laurie Jouanin ◽  
Guillaume Marie ◽  
...  

ABSTRACTThe goal in this study was to synthesize a lanthanum - nickel phase (Ruddlesden-Popper phases) La4Ni3O10. This material was prepared using a polymeric route. An easy synthesis method is presented in order to obtain an economical cathode material, which can be used in Solid Oxide Fuel Cells (SOFC). The polymeric precursors were prepared following the Castillo method. The originality of this work was to optimize the ratio HMTA/ metallic salts from 1 to 6. The obtained powders were characterized by thermal analysis; Differential Scanning Calorimetry (DSC Q10 Instrument TA), Thermogravimetric Analysis (TGA - Q50 Instrument TA-) and X-ray diffractometer (Bruker, D8 Advance diffractometer), in order to determine the crystallized phase. Experiments 5 and 6 did not present coagulation but after few days, solution 5 was transformed into a gel. Gels 2 to 5 were heated in order to obtain a solid material. These powders are characterized by thermogravimetric and thermo-differential methods. The powders obtained at 800, 900 and 1000°C were analyzed by X-ray diffraction and it was found that the temperature to get to the La4Ni3O10 phase was 1000ºC.


2013 ◽  
Vol 750-752 ◽  
pp. 259-264
Author(s):  
Feng Li ◽  
He Bian ◽  
Hui Zhang

Four kinds of TiO2/CNT (or carbon fiber) composites were successfully prepared by the sol-gel method using Ti(OBu)4 as precursor of TiO2, and untreated CNT, carboxylic CNT, hydroxylated CNT and carbon fiber were used as carriers, respectively. After heat treatment at 400 and 800°C, TiO2/CNT nanocomposites and purified TiO2 were obtained. Their structure and morphology were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results indicate that different carbon nanotubes and nanofiber have notable influences on the morphology and structure of TiO2 nanocrystals.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Rijing Wang ◽  
Xiaohong Wang ◽  
Xiaoguang Xi ◽  
Ruanbing Hu ◽  
Guohua Jiang

A simple sol-gel method was used to prepare magnetic Fe3O4/SiO2/TiO2composites with core-shell structure. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM) have been applied to investigate the structure and morphology of the resultant composites. The obtained composites showed excellent magnetism and higher photodegradation ability than pure TiO2. The photocatalytic mechanism was also discussed. The magnetic composites should be extended to various potential applications, such as photodegradation, catalysis, separation, and purification processes.


2014 ◽  
Vol 32 (4) ◽  
pp. 696-701 ◽  
Author(s):  
Hong-Yan Sun ◽  
Xin Kong ◽  
Wei Sen ◽  
Zhong-Zhou Yi ◽  
Bao-Sen Wang ◽  
...  

AbstractEffect of different Sn contents on combustion synthesis of Ti2SnC was studied using elemental Ti, Sn, C and TiC powders as raw materials in the Ti-Sn-C and Ti-Sn-C-TiC system, in which the molar ratio of Ti/C was set as 2:1. The reaction mechanism for the formation of Ti2SnC was also investigated. The results showed that the amount of Ti2SnC in combustion products firstly increased with increasing of Sn content (0.6 to 0.8 mol), and then decreased with further increasing of Sn content (1.0 to 1.2 mol). Upon addition of 15 % TiC instead of Ti and C, the optimum addition of Sn decreased to 0.7 mol and a higher purity of Ti2SnC was obtained. The Ti2SnC powders were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD).


2011 ◽  
Vol 391-392 ◽  
pp. 1205-1209
Author(s):  
Qing Yang Du ◽  
Hui Jun Xu

Mixed conducting oxides SrFeCo0.5Oy was synthesized by citrates sol-gel method. The effect of calcining atmosphere on synthesis process of samples was studied. The crystal structure and morphology of calcined powders were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM) and the bulk density of sintered samples was determined by Archimedes method. The experimental results showed that the dominant phase perovskite Sr-Fe-Co-O oxides was prepared by calcining in oxygen. The powder obtained had flake shape and the particle was smaller. The dominant phase orthorhombic Sr-Fe-Co-O oxides was prepared by calcining in argon. The powder obtained had sphere shape and the particle was bigger. The bulk density of samples sintered at low temperature in oxygen was smaller than that of in argon. The reaction mechanism of samples calcined in different atmosphere was also discussed.


2018 ◽  
Vol 934 ◽  
pp. 66-70
Author(s):  
Singsarothai Saowanee ◽  
Niyomwas Sutham ◽  
Tawat Chanadee

ZrB2-ZrC composite powders were synthesized from zircon sand by self-propagating high-temperature synthesis (SHS). The reactions were verified and the feasibility of obtaining the predicted products was calculated from the adiabatic temperature (Tad) and the equilibrium composition using the HSC®chemistry program. The results show that the SHS products consisted of ZrB2, ZrC, ZrO2, ZrSiO4, MgO, and Mg2SiO4. Leaching the products with 0.5 M of HCl solution eliminated the by-product of MgO and the intermediate Mg2SiO4phases. The phase composition of the products was characterized by X-ray diffraction (XRD) and the morphologies were characterized by scanning electron microscopy (SEM) coupled with energy-dispersive X-ray (EDX).


Sign in / Sign up

Export Citation Format

Share Document